

Acoustic Considerations for Wood Frame Construction

WoodWorks!

April 2016

Russ Lewis, M.Eng., P. Eng.

RWDI

Consulting Engineers & Scientists

Canada | USA | UK | India | China | Hong Kong | Singapore

Reputation Resources Results www.rwdi.com

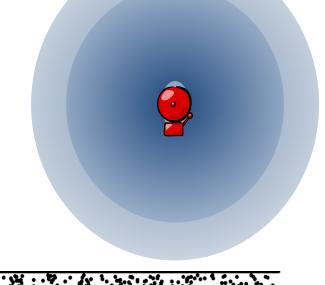
Introduction

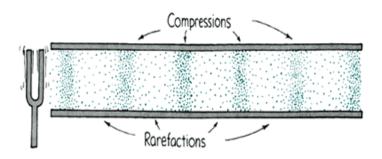
Russ Lewis, M.Eng. P.Eng.

- Technical Director in Acoustics at RWDI
- 20+ years in acoustic consulting engineering.
- Experience in Canada, US and overseas.
- Experience in :
 - Residential (including wood frame)
 - Mid and high-rise mixed use
 - Secondary/post-secondary education and healthcare facilities
 - TV, radio and recording studios;
 - Performing arts centres;
 - Sports, fitness and leisure complexes;
 - Arenas, etc...

Outline:

- Building Acoustics Metrics (numerical ratings)
- Multi-Unit Residential Acoustic Criteria
- Noise Isolation
 - Airborne noise isolation (partitions & floor/ceiling)
 - Impact noise isolation (floor/ceiling)
 - Flanking paths (structure-borne noise isolation)
- Transfer of sound through walls and floors
- Look at performance of alternative constructions
- Example buildings
- Questions

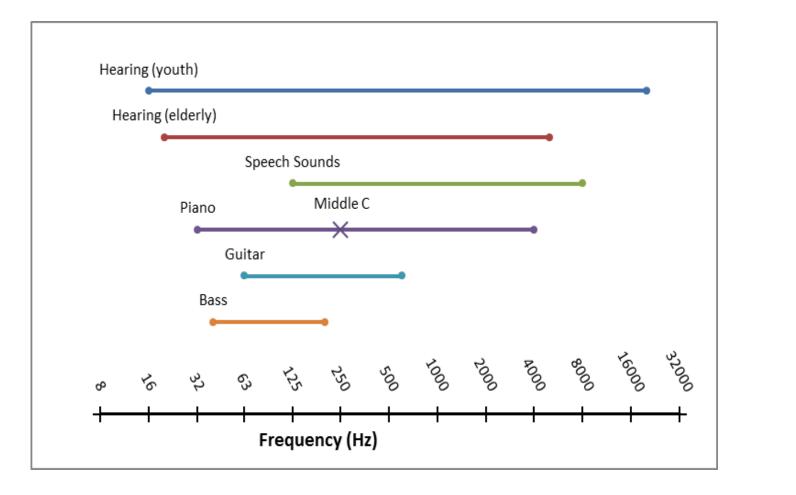

- Acoustics is a key challenge in wood-frame construction
 - Recent allowance of 6-storey buildings
 - Worldwide new buildings up to 26-storey
- Early planning and good design practice to ensure good acoustics
- Main goals meet the sound isolation and impact isolation requirements for code compliance and occupant comfort



CONSULTING ENGINEERS & SCIENTISTS

•◄

- o Sound is a Wave
 - Pressure wave moving through the air
 - Regions of high pressure (the peaks of the wave) and low pressure (the troughs)

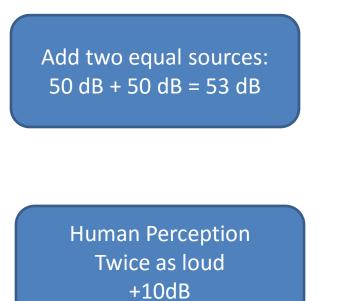


Graphics from: www.physics.uiowa.edu/~umallik/adventure/sound.htm

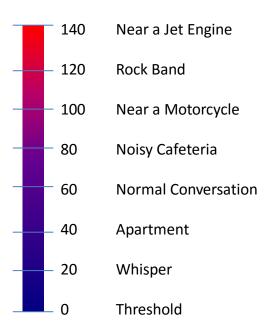
o Frequencies of Audible Sound

RWD

CONSULTING ENGINEERS & SCIENTISTS


•◄

Acoustics Fundamentals



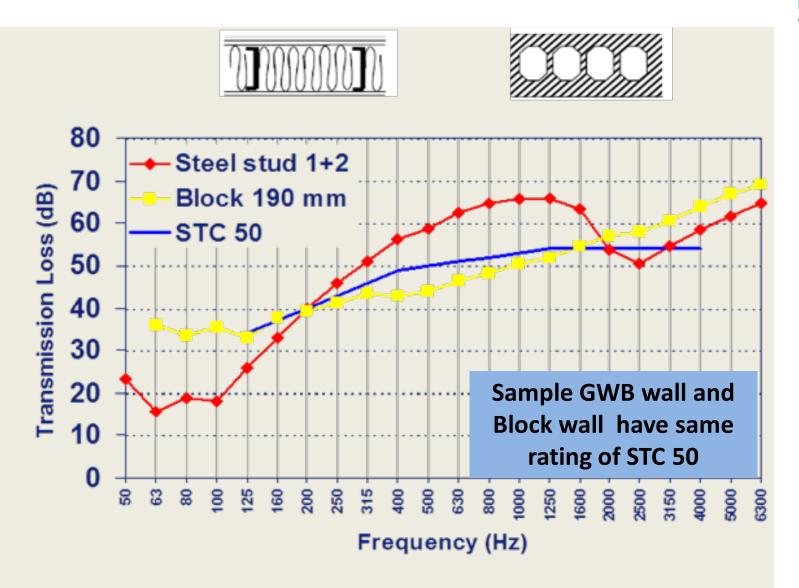
•◄

Sound pressure levels – the decibel - dB

Common Sounds in dB

- Common in Codes, Specifications and Compliance
 Documents
 - Simple and handy
 - Simple, but don't always ensure occupant comfort
- Ratings for noise are based mainly on speech
 - not or your neighbour's subwoofers or low frequency mechanical noise ...
- Some ratings are from laboratory, others are fieldmeasured ratings

Building Acoustics Metrics – Noise Isolation


- Sound Transmission Class (STC) laboratory
- Field Sound Transmission Class (FSTC) field
- Apparent Sound Transmission Class (ASTC) field
- Noise Isolation Class (NIC) field
- Transmission Loss drop in noise measured in dB <u>at a particular frequency as it passes</u> through a partition....

Limitations of STC ...

CONSULTING ENGINEERS & SCIENTISTS

Noise Isolation – single number ratings

Symbol	STC, FSTC, ASTC, NIC
Name	Sound Transmission Class
General Description	Single number rating of the sound isolation properties of a partition system. When evaluated in the field denoted by FSTC (flanking suppressed); ASTC, NIC (flanking included)
Standard	ASTM E413

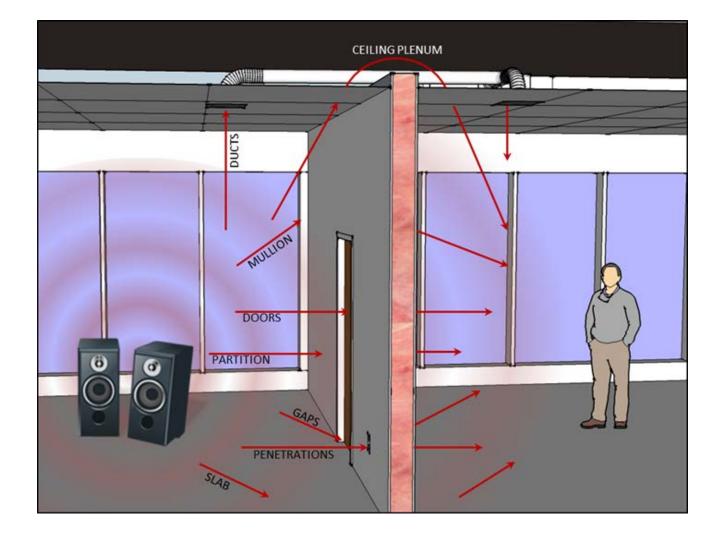
Sound Transmission Class (STC)

- Laboratory test
- Analytical calculation

Field Sound Transmission Class (FSTC)

- Field tested
- Includes some flanking paths but effort to suppress required during testing.
- Limitations on room sizes and dimensions
- Takes into account receiving room damping (reverberation time)

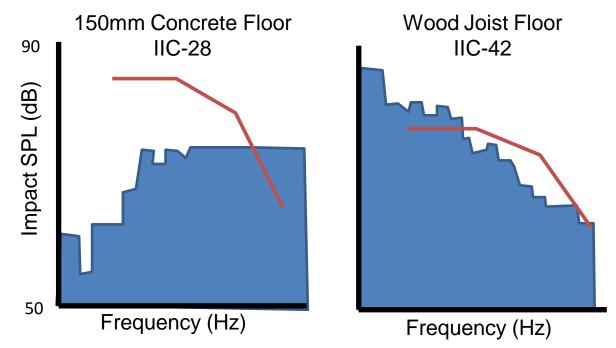
Apparent Sound Transmission Class (ASTC)


- Field tested or analytical calculation.
- Similar to FSTC, but no limitations to room sizes and dimensions.
- Includes flanking
- Takes into account receiving room damping (reverberation time)

Noise Insulation Class (NIC)

- Field tested
- Includes flanking
- Simple difference in sound level in various 1/3 octave band frequencies.
- Does not adjust for receiving room damping (reverberation time)

CONSULTING ENGINEERS & SCIENTISTS



Symbol	IIC
Name	Impact Insulation Class, dB
General Description	Single number rating of the impact sound isolation properties of a floor/ceiling system. When evaluated in the field (considers flanking), denoted by FIIC. <u>Higher</u> rating is better.
Region	North America
Standard	ASTM E989

Building Acoustics Metrics – Impact Noise Isolation

- Impact Insulation Class (IIC)
- A single number rating of the effectiveness of a floor/ceiling system to stop the transmission of impact sound (higher = better isolation)
- Sliding contour that is fit to performance impact transmission loss (TL) data
- Developed for concrete structures

Source: National Research Council Canada Construction Technology Update No. 35: Controlling The Transmission of Impact Sound Through Floors, 1999.

Must meet building code requirements:

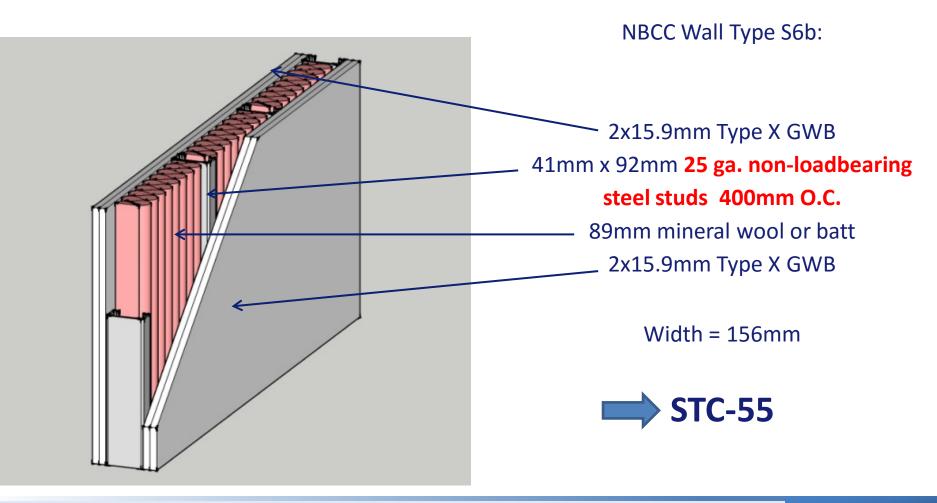
- National Building Code of Canada:
 - STC-50 for dwelling
 - STC-55 dwelling to elevator shaft
 - NBCC 2015: ASTC-47
- Impact Insulation Class (IIC):
 - No requirements in National Building Code:
 - Guideline of IIC-55
- Similar for U.S. International Building Code:
 - STC-50 or FSTC-45
 - IIC-50 or FIIC-45 is required

- Minimum building code requirements will not necessarily lead to occupant satisfaction.
- Higher noise isolation ratings are generally recommended (STC-60)
- Other requirements may also apply:
 - Ontario New Home Warranties Plan Act (Tarion)
 - Design review, field testing, sign-off by a qualified acoustic engineer.

Subjective impression to noise isolation:

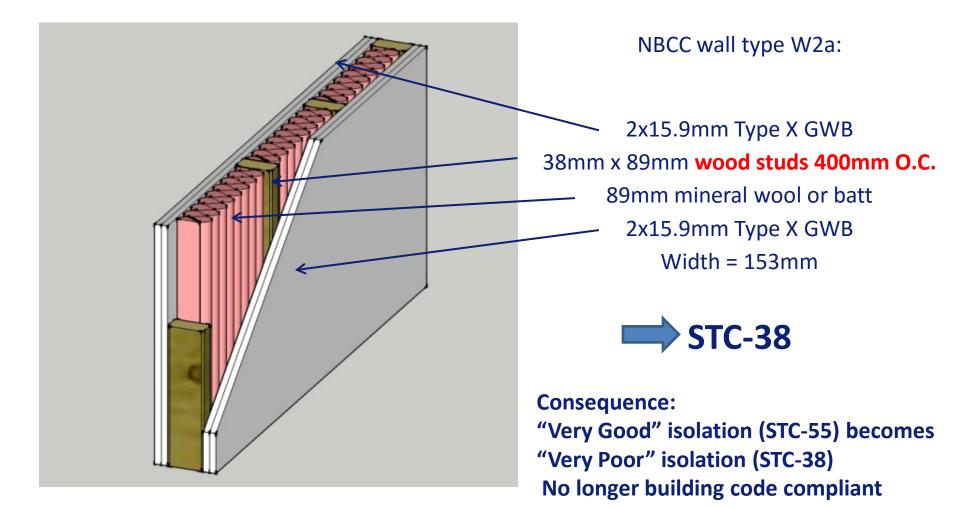
STC Rating	Degree of Acoustical Privacy	
<45	Poor:	Normal speech audible and usually intelligible
45	Marginal:	Normal speech audible and sometimes intelligible
50	Good:	Normal speech audible but not intelligible
55	Very Good:	Raised voices usually audible but not intelligible
60+	Excellent:	Raised voices not audible

*Assumes a quiet background sound level, typical for residential living areas (~35 dBA)



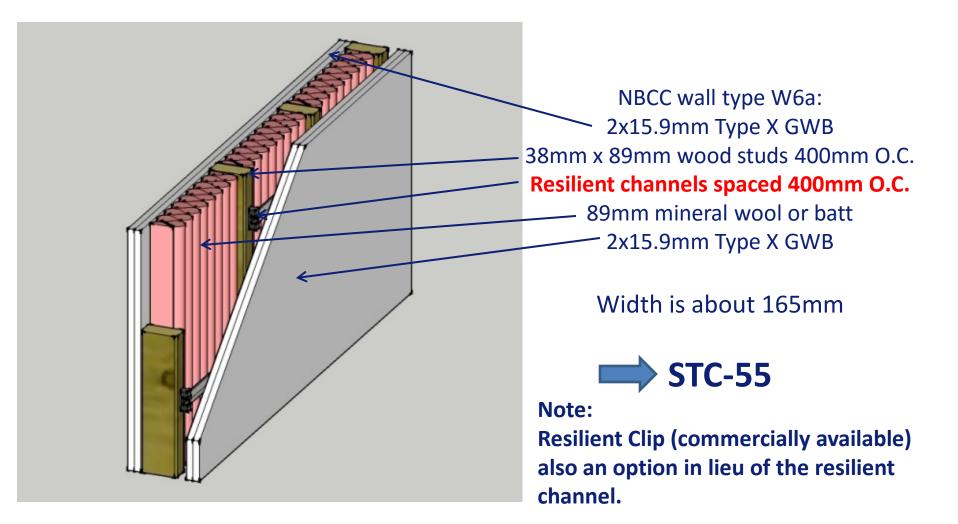
Airborne Sound Isolation Performance determined by:

- The number of layers of drywall (surface mass of the partition)
- Insulation in the stud cavity (damping)
- Stud stiffness or connection between sides of partition
- Stud spacing
- Flanking paths airborne and structure-borne



Non-loadbearing (25 ga.) Steel Studs

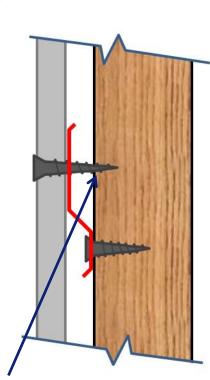
25 ga Studs Changed to Wood Studs


CONSULTING ENGINEERS & SCIENTISTS

- Noise isolation reduced due to:
 - stiffer studs
 - better coupling between sides of the partition.
- Required: flexible, resilient connection or physical break at the studs.

Noise Isolation - Partitions

Added Resilient Channel

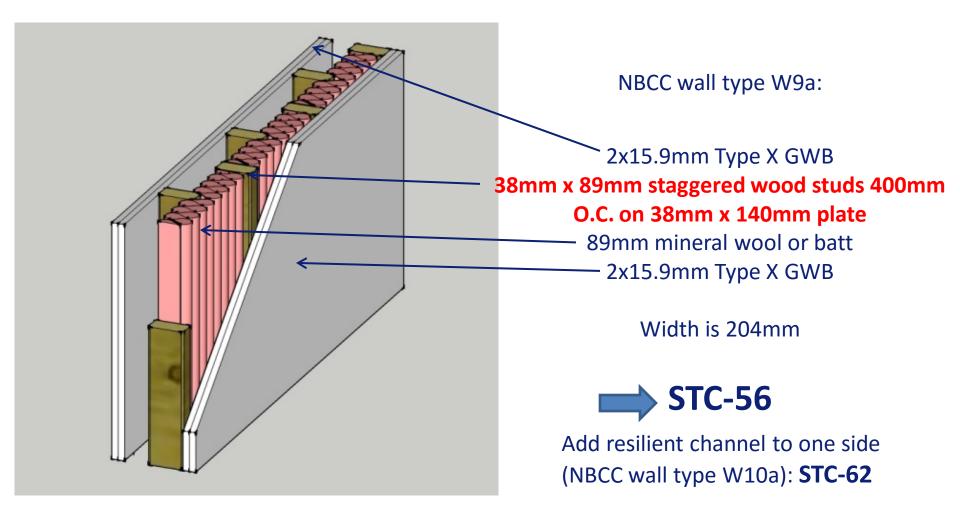

Noise Isolation – Resilient Channel

Potential difficulties with RC:

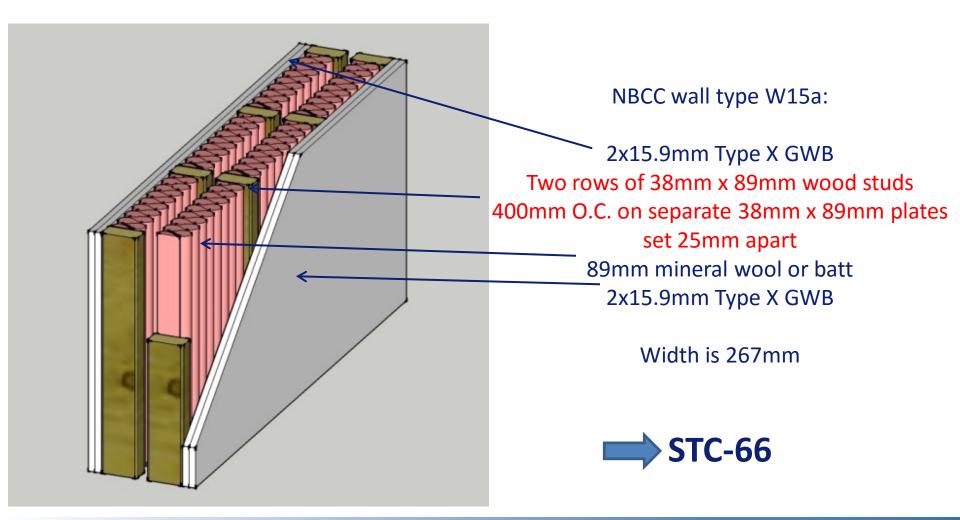
- Installation of RC upside down (experienced contractors required for these installations).
- Bridging through the RC to the stud behind (screws are too long, or fastening to RC not done between stud locations).
- Hanging of cabinets, shelving or TV (directly to studs, bridging the RC).

Consequence:

"Very Good" isolation (STC-55) becomes "Very Poor" isolation (STC-38) No longer building code compliant

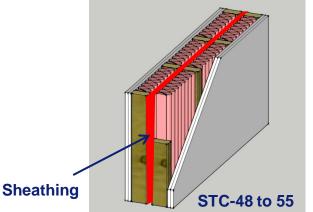

RC Bridging

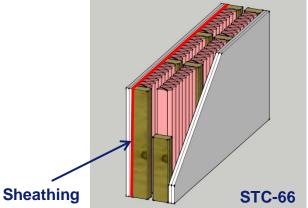
- Better solution to add a physical break between sides of partition:
 - Staggered stud partition
 - Separate stud partition
- Physical break also attenuates potential impact noise, e.g. from wall mounted cupboards.



Staggered Stud Partition

Separate Stud Partition

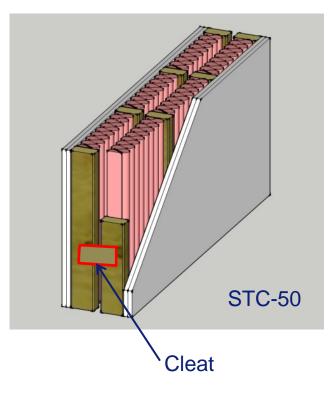

Noise Isolation - Separate stud wall: Sheathing


 Adding sheathing to separate stud wall will reduce STC (less TL at low frequencies)

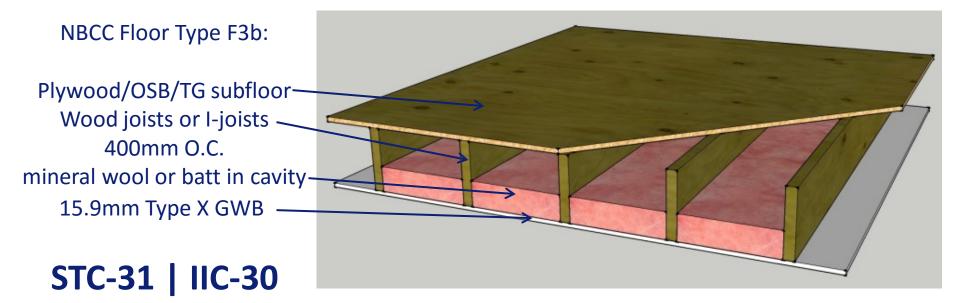
Consequence:

- "Excellent" STC-66 isolation becomes:
- Sheathing in cavity on one side:
- "Very Good" STC-55 isolation
- Sheathing in cavity on both sides:
- "Good" STC-49 isolation
- Marginally meets building code
- Mitigation:
 - Add sheathing to outside of studs, under GWB.
 - Include RC or resilient clips on GWB

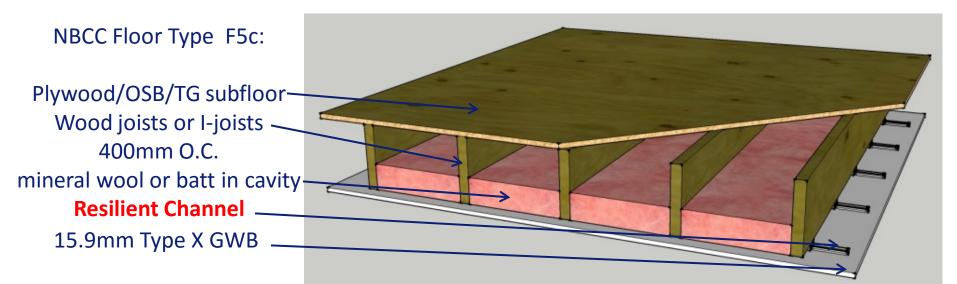
~STC-66


29

Noise Isolation - Separate stud wall: Cleats


- RWDI consulting engineers & scientists
- Cleats often installed during framing separate stud walls:
 - If not removed, bridging occurs and noise isolation is degraded.
 - **Consequence:**
 - "Excellent" STC-66 isolation becomes
 - "Good" STC-50 isolation
 - Marginally building code compliant.

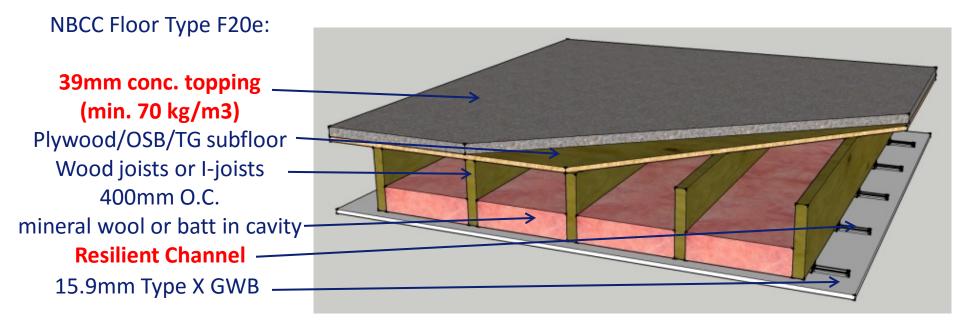
- Mitigation:
 - Remove cleats if not required for stability.
 - If cleats required for stability:
 - Acoustic sway braces (include rubber or neoprene isolation element).


Wood Joist Floor + GWB Ceiling

Want minimum STC-50 and IIC-55 (Guideline)

Wood Joist Floor + GWB Ceiling on Resilient Channel

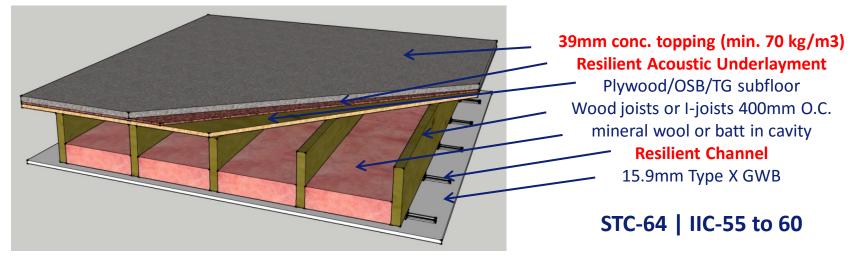
STC-48 | IIC-41


2x 15.9 Type X GWB: STC-52 | IIC-46

Note: Details required for e.g. lighting fixtures.

33

Wood Joist Floor + Concrete Topping + GWB Ceiling on Resilient Channel


STC-64 | IIC-40

Noise Isolation: Impact Noise (Floor/Ceiling)

• Ceiling suspended on RC:

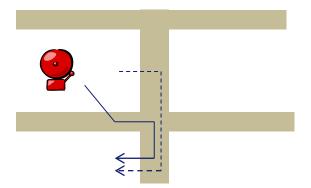
- IIC-50 U.S. IBC criterion not met.

- Resilient underlayment + concrete topping is required to achieve IIC-55 to 60 rating.
 - Concrete topping + resilient underlayment also reduces flanking path via floor.
 - RC reduces flanking path via ceiling.

Noise Isolation: Structure-Borne Flanking Paths

Flanking paths

• More significant for timber framed construction than concrete structure

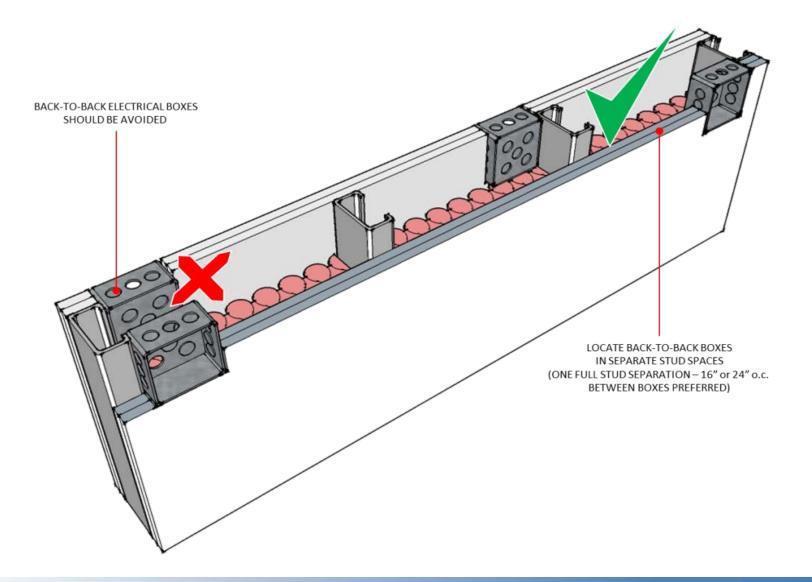

Horizontal:

- Airborne paths
- Via Floor
- Via Ceiling

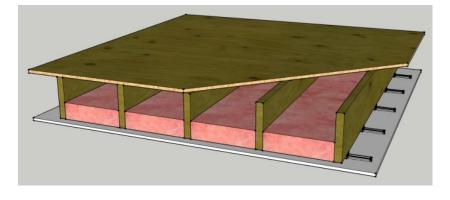
Vertical:

- Airborne paths
- Via floor to wall
- Via wall to wall (not significant)

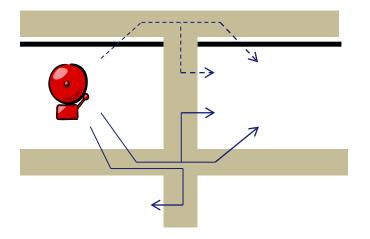
Noise Isolation: Flanking Paths


- Airborne flanking paths (partitions):
 - Electrical/cable boxes:
 - Avoid back-to-back
 - Min. 400mm separated,
 - Preferably in separate stud cavities.
 - Service penetrations
 - Sealed with non-hardening caulking
 - Avoid services in party wall separate shaft wall next to party wall.
 - Seal top and bottom of wall with acoustic caulking (at GWB and header/sole-plate).

Electrical Boxes

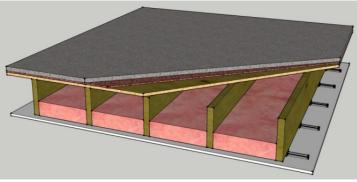


CONSULTING ENGINEERS & SCIENTISTS

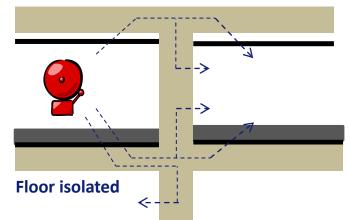


Structure-borne Flanking Paths

Ceiling surfaces isolated


- Flanking via ceiling:
 - GWB ceiling on Resilient Channel or Clips.
 - Flanking path reduced by ~10 dB.
 - No longer significant flanking path

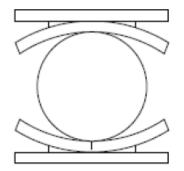
Noise Isolation: Flanking Paths


Structure-borne Flanking Paths

- Flanking via floor:
 - **Major flanking path:** If not addressed, can limit noise isolation to ~ ASTC-40 to 45.
- Mitigation:
 - Concrete topping either bonded to sub-floor, or, preferably on resilient underlayment is required to adequately attenuate this flanking path.
 - Concrete topping on resilient underlayment also attenuates:
 - Impact noise to suite below
 - Flanking to suite below

• Other considerations:

Ceiling Isolated



- Floor joists parallel to party wall, or break in joists if perpendicular (across) party wall.
- Break in sub-floor at party wall (may not be allowed due to seismic requirements).

Prefabricated panels:

- Noise/vibration isolation required between prefab floor sections and load bearing walls.
 - Neoprene/rubber element.
 - Other noise isolation device, e.g.:

Device to reduce flanking transmission by suppressing bending wave transfer from above to below: Cylinder (d=30-50mm) placed between conical shells.

Source: Vinnova Project 2007-01653, Acoustics in Wooden Buildings State of the Art 2008, SP, 2008.

Noise Isolation: HVAC

Noise issues from HVAC:

- Low frequency dominant.
- Vibration isolation assumes a stiff and heavy (concrete) floor construction.
- Fan coil units (FCUs) installed inside suites.
- Light-weight structure susceptible to structure-borne noise.

Mitigation:

- Concrete floor required for mechanical rooms to ensure proper vibration isolation of equipment.
- Concrete topping and vibration isolation required for suite FCUs.
- Careful design and selection of vibration isolation.

Floor Vibration Implications:

- Addition of significant amount of mass (concrete and GWB) to structure will lower floor's fundamental frequency.
- This helps to separate this frequency from the operating frequencies of mechanical equipment
- Planning for noise control ties into structural design (joist design, spacing).

Summary of best practices design:

Walls:

- Separate stud, staggered stud or RC required.
 - Practical limitations for RC.

Ceiling:

- GWB suspended on RC.
 - Also suppressed flanking paths.

Floor:

- Concrete topping required to maintain floor/ceiling ASTC and to maintain partition (horizontal) ASTC by suppressing flanking paths.
- Concrete topping + resilient underlayment required to meet IIC-55 NBCC guideline and to better suppress flanking paths.

Flanking paths are critical to the noise isolation performance

Case Study: Wood Innovations and Design Centre

CONSULTING ENGINEERS & SCIENTISTS

The Wood Innovation and Design Centre (Prince George, BC) More of a true wood-first design:

- 29.5 metres tall
- Six floors, with an actual height of about eight storeys.
- Established the acoustic design targets (reverberation time, noise criteria, STC requirements)
- Walls were double stud or staggered wood stud
- Floor/ceilings were a combination of exposed CLT (Cross-laminated timber) and CLT/gwb on RC for airborne sound and a complex carpet on plywood on rubber matts for IIC

Residence at Brock Commons at UBC:

- 20 Storey Building
- Hybrid construction
- Concrete topping and GWB ceilings.
- Used metal studs for the party walls

6 storey student residence at UBC:

- Wood first project, but still has concrete topping and GWB/RC ceiling.
- Used double wood studs for the party walls between suites and staggered wood studs to corridors.

Clinical Services Building at Children's & Women's Hospital Campus Vancouver

- 3 storey building
- Wood framing: accepted lower STC design targets in order to utilize a single stud wood construction.
- Added electronic sound masking to increase speech privacy and to compensate for lower STC
- For areas where there was video conferencing, double stud construction was used

- 1. National Building Code of Canada, 2010 & 2015
- 2. Vinnova Project 2007-01653, *Acoustics in Wooden Buildings State of the Art 2008*, SP, 2008.
- 3. National Research Council Canada Research Report 219: *Guide for Sound Insulation in Wood Frame Construction*, 2006.
- 4. National Research Council Canada Construction Technology Update No. 66: *Airborne Sound Insulation in Multi-Family Buildings*, 2008.
- National Research Council Canada Construction Technology Update No. 35: Controlling The Transmission of Impact Sound Through Floors, 1999.
- 6. National Research Council Canada SoundPATHS software web application: <u>http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/soundpaths/index.html</u>

Thank-you for listening!

WoodWORKS! – April 2016

Russ Lewis, M.Eng., P. Eng.

Senior Consultant | Acoustics, Noise & Vibration #1000 – 736 8 Avenue SW Calgary, AB, Canada T2P 1H4 (403) 232-6771 x6241 <u>russ.lewis@rwdi.com</u>

Canada | USA | UK | India | China | Hong Kong | Singapore

Reputation Resources Results www.rwdi.com