CLT Wood Design Seminar

MONCTON, December 1st 2015

Design of CLT wall and floor to resist lateral and gravity loads

Roberto Tomasi*

In cooperation with

TIMBERTECH

Startup of the University of Trento

* Harrison McCain Visiting Professor at UNB

Layout presentation

- 1. Introduction
- 2. Cross laminated timber, the product and the constructive system
- 3. Comparison between the CSAO86 and Eurocode 5
- 4. Design example

UNIVERSITÀ DI TRENTO 50 ANNI 1962 - 2012 16.000 s 600 prof

1962 - 2012 **16.000** students **600** professors and researcher

Department of

CIVIL, ENVIRONMENTAL AND MECHANICAL ENGINEERING

Course in **Timber Engineering** in Master degree in Building Engineering/Architecture and Civil Engineering

Department of CIVIL, ENVIRONMENTAL AND MECHANICAL ENGINEERING

EXPERTISE

Catalogo dataholz

Sistemi costruttivi

Seismic design of new and existing timber structures

dataholz.com

Technology transfer (software, courses, industrial research)

promo_legno risponde Consulenza tecnica

In collaborazione con TIMBERTECH UTIONS FOR TIMBER ENGINEERING

promo legno risponde

Tecnologia e prodotti Fisica tecnica Statica e calcolo Antisismica Certificazione

Calcolo Coperture Tool Online Servizio di Holzforschung Austria

4/110

MONCTON, December 1st 2015

Predimensionamento coperture Stratigrafia Coometria della conertura Coometria travi secondarie Luce Gronda 1,2 [m] Pendenza 20 [0] Interasse 0,7 [m] Altezza colmo 5 [m] Legno Lamellare Il legno lamellare incollato è costituito da almeno tre tavole o lamelle essiccate e incollate tra loro con le fibre parallele. Prima di essere incollate, le lamelle vengono classificate secondo la resistenza in modo visivo o meccanico e piallate. Il legno lamellare incollato è particolarmente adatto per componenti da costruzione soggetti a carichi elevati e con una luce molto ampia, oltre che per Materiale travi secondario esigenze elevate di stabilità della forma e di estetica. Materiale Legno lamellare di conifera 🔹 Classe di resistenza 6 GL 24h 🔻

Roberto Tomasi

Department of CIVIL, ENVIRONMENTAL AND MECHANICAL ENGINEERING

EXPERTISE

- Seismic design of new and existing timber structures
- Technology transfer (software, courses, industrial research)

CLT Training Course In the frame of COST Action FP1004

April 15th-17th 2014, Trento, Italy

COST Action FP1402 "Basis of Structural Timber Design" from research to standards

TRENTO TIMBER RESEARCH GROUP

TIMBERTECH Roberto Tomasi

MONCTON, December 1st 2015

5/110

UNITRENTC

UNITRENTO

Layout presentation

1. Introduction

2. Cross laminated timber, the product and the constructive system

- 3. Comparison between the CSAO86 and Eurocode 5
- 4. Design example

Cross Laminated Timber (CLT) is a ...

is the generic term for a class of thick or massive engineered wood plate products suitable for applications like wall and floor slabs.

2013 more than 35 production sites worldwide

•currently roughly 95 % of the production volume in Central Europe

- ■Austria (~ 63 %)
- •Germany (~ 26 %)
- Switzerland (~ 6 %)

- Lumber pieces in some layers are arranged orthogonal to pieces in other layers,
- cross-reinforced in all directions like plywood

TIMBERTECH Roberto Tomasi

Cross Laminated Timber (CLT) is a ...

• used for large-sized wall and floor elements (2D) product for

load bearing in-plane and out-of-plane

WALL

Modified from Brandner (2014)

9+1 storeys Milan 2012

9+1 storeys Melbourne 2012

12+1 storeys Quebec 2016

11/110

FIRE SAFETY IN MULTI-STOREY TIMBER BUILDINGS

Fire safety is widely considered as one of the most significant obstacles for increasing the use of wood in construction. Most fire regulations in Europe have traditionally been very **prescriptive** and based on experience from large city fires. World-wide, several research projects on the fire behaviour of timber structures have been conducted over the past decades, aimed at providing basic data and information on the safe use of timber. **Novel fire design concepts** and **models** have been developed, based on extensive testing and modelling.

From: Birgit Östman, Bo Källsner, National building regulations in relation to multi-storey wooden buildings in Europe, School of Technology and Design, Reports, No. 60, Växjö University Sweden 2011

PSEUDO-DYNAMIC TEST U-TRENTO LABORATORY 2006

SHAKE TABLE TEST **LNEC LABORATORY 2013** PGA 0,50g

MONCTON, December 1st 2015

13/110

INTARE TRONGCO EUROPRO (MEMBRO EOTA) AI SENSI DELL'ART.5 DEL

40 DI BENDITARE TECHICO NAZIONALE, AI SENSI DEL D.M. 14:01 2008

From December 2011 this law was abolished

HORIZONTAL FORCES: WIND

Wind pressure on a building surface depends primarily on its **velocity** and of the shape and **slope** of the surface. They are picked up by surface members (**pressure or suction**) which transfer them to the lateral stability devices.

MONCTON, December 1st 2015

15/110

TIMBERTECH

Roberto Tomasi

UNITRENTC

A primary role is played by roof and horizontal diaphragms which, beside resisting to vertical forces, transfer lateral forces to **shear walls**, cross brace or frames.

The **seismic loads** on the structures during an earthquake are due to **internal inertia** that results from **ground accelerations** to which the mass of the system is subjected. They depend on the intensity of the ground motion (**PGA**), on the dynamic properties of the buildings (e.g. mode shapes and **periods**), on the **mass** of the components of the buildings.

For convenience in design, an earthquake is translated into an **equivalent static load** acting horizontally on the structures

The seismic loads on the structures during an earthquake are due to internal inertia that results from ground accelerations to which the mass of the system is subjected. They depend on the intensity of the ground motion (PGA), on the dynamic properties of the buildings (e.g. mode shapes and **periods**), on the **mass** of the components of the buildings.

For convenience in design, an earthquake is translated into an **equivalent static load** acting horizontally on the structures.

The **seismic loads** have a slight different character than wind forces, as they are usually concentrated at high-mass areas (e.g. roof and floors), but they can similarly represented by a **series of forces acting laterally on the primary structure**.

and the structural vertical elements (e.g. shear walls) associated to the elastic reaction.

MONCTON, December 1st 2015

19/110

TIMBERTECH

Roberto Tomasi

STRUCTURAL CONNECTION SYSTEM IN CLT BUILDINGS: ROLE OF THE STRUCTURAL JOINTS

prefabricated "platform" system;

Seismic performance of multistorey timber buildings

WALLS: COMPONENTS FOR RESISTANCE TO LATERAL LOADS

vertical plane:

horizontal plane

shear walls, braced frames, and moment resisting frames

diaphragms (floor and roof plans) of the building, or horizontal trusses

22/110 Roberto Tomasi u

IN-PLANE DISTRIBUTION OF THE HORIZONTAL FORCES ON THE SHEAR WALLS: ROLE OF THE DIAPHRAGMS STIFFNESS

RIGID DIAPHRAGM

STIFFNESS DEPENDS ON

- size of the diaphragms;
- type of material;
- relative stiffness betw. walls and diaphragms

FLEXIBLE DIAPHRAGM

The flexibility of the diaphragm, relative to the shear walls whose forces it is transmitting, also has a major influence on the nature and magnitude of those forces.

23/110

Roberto Tomasi

IN-PLANE DISTRIBUTION OF THE HORIZONTAL FORCES ON THE SHEAR WALLS: ROLE OF THE DIAPHRAGMS STIFFNESS

LATERAL FORCE DISTRIBUTION RULES

DIAPHRAGM	WALLS TAKE LOADS	
FLEXIBLE	according to tributary areas	
RIGID	according to the relative stiffness	
SEMI-RIGID	modelling the semi-rigid behavior with shell elements or diagonal struts elements	

ALTERNATIVE ENVELOP APPROACH:

 the highest forces from rigid and flexible assumptions can be used as a conservative approach avoiding a numerical modelling of the diaphragms behavior

24/110

TIMBERTECH

Roberto Tomasi

IN-PLANE DISTRIBUTION OF THE HORIZONTAL FORCES ON THE SHEAR WALLS: DEFINITION OF RIGID DIAPHRAGMS ACCORDING TO STANDARD

ASCE 7 (2010) - ASCE 41-06 EN 1998 – Italian code 2008

Displacement condition	DIAPHRAGM STIFFNESS	Displacement condition	DIAPHRAGM STIFFNESS
MDD > 2·ADVE	flexible		
MDD < 0,5·ADVE	rigid	MDD < 0,1·ADVE	rigid
0,5·ADVE < MDD < 2·ADVE	semi-rigid		

ASCE standards provide formulae for determining the deflections of diaphragms and shear walls constructed with wood technology

Eurocode 8 and Italian code 2008 give more severe rule for a rigid diaphragm

Roberto Tomasi

IN-PLANE DISTRIBUTION OF THE HORIZONTAL FORCES ON THE SHEAR WALLS: LATERAL FORCE DISTRIBUTION IN A ONE-STOREY BUILDING

A ONE-STOREY BUILDING

The horizontal diaphragm can be considered **infinitely** rigid

Mass is considered evenly distributed, therefore the center of mass can be located approximately in the geometric center of the floor (centroid)

Storey shear and Storey Torsional Moment is distributed to each wall according to relative stiffnesses

Determine location of **center of rigidity** and **center of force** to determine any eccentricity and the storey torsional moment

IN-PLANE DISTRIBUTION OF THE HORIZONTAL FORCES ON THE SHEAR WALLS: LATERAL FORCE DISTRIBUTION IN A ONE-STOREY BUILDING

If we take into account the contribution of the three DOF rigid body motion we obtain the lateral force distribution rules for an hyperstatic shear wall one-storey building

relative rigidity rule

MONCTON, December 1st 2015

27/110

TIMBERTECH

Roberto Tomasi

ELASTIC HORIZONTAL DISPLACEMENT OF A TIMBER SHEAR WALL: DEFORMATION CONTRIBUTION FOR A CLT- WALL

WORKS!

3 main contributions

UNITRENTO

1.Shear deformation

accounts for the **shear deformation** of the CLT panel (the bending deformation can be neglected for ratio h/l near to 1).

2.Rigid-body translation

accounts for the shear deformation of **anglebrackets or screws** used along the length of the wall

3.Rigid-body rotation

accounts for the tensile deformation of the **holddowns** used at each corner of the wall

- The stiffness contribution due to "rocking" is not linearly proportional with the length of the wall;
- Vertical load reduces the horizontal displacement and is crucial to the activation of the spring associated to the hold-down ("rocking mechanism")

The distribution of the force between element is based on a **cantilever model**. The **lintel beams** are considered as **hinged beam** axially rigid, not able to transmit flexural moment between adjacent CLT piers.

Each "cantilever" is modelled considering all the displacement contribution previously discussed (shear, translation and rocking displacement). The formulation of the **matrix of stiffness parameters** allow to determine the force distribution between CLT piers.

Layout presentation

- 1. Introduction
- 2. Cross laminated timber, the product and the constructive system

3. Comparison between the CSAO86 and Eurocode 5

4. Design example

In **1975** the Commission of the European Community decided of an action programme in the field of construction. The objective was the elimination of technical obstacles to trade and the **harmonisation of technical specifications**.

Within this programme, the Commission took the initiative to establish a set of **harmonised technical rules for the design of construction** works which would serve, in a first stage as an alternative to the national rules, and ultimately would replace them.

UNITRENTO

Structure of the Eurocodes

10 Eurocodes - 58 Parts - 5320 pages

MONCTON, December 1st 2015

35/110

TIMBERTECH

Roberto Tomasi

UNITRENTO

Structure of the Eurocodes

MONCTON, December 1st 2015 37/110

asi UNITRENTO

Limit state Design Method

Both the Eurocode and the CSA are based on the Limit States Design Method (LSD)

Limit state design requires the structure to satisfy two principal criteria the **ultimate state (ULS) (equilibrium, internal failure, ground)** and the **serviceability state (SLS) (deformation, vibration, damage).**

Limit state design – Partial Factor Method

WOOD	TON, December 1 st 2015 TIMBERTECH 38/110 Roberto Tomasi UNITRENT
SEMINAR ULS Value of	Actions
$RESISTANCE \qquad R_d \ge$	E _d ACTION
$R_d = \phi R$	$R_d = \frac{R_k}{\gamma_m}$
 <i>R</i> is the nominal resistance; <i>φ</i> is the resistance factor; 	 <i>R_k</i> is the characteristic resistance; <i>γ_m</i> is the partial factor for material;
$S_d = \alpha_D \mathbf{D} + \Psi \gamma \{ \alpha_L L + \alpha_Q Q + \alpha_T T \}$	$\begin{split} E_d &= \sum_{j \ge 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{Q,1} \cdot \\ Q_{k,1} &+ \sum_{i \ge 1} \gamma_{Q,i} \cdot \Psi_{0,i} \cdot Q_{ki} \end{split}$
 Ψ is the Combination Factor; γ is the Importance Factor; α_D is Dead Load Factor; α_L is Live Load Factor; α_Q is Earthquake Load Factor; α_T is Thermal Effect (Temperature) Load Factor; 	 G_k is the permanent action; Q_{k,1} is the leading variable action; Q_k is an accompanying variable action; γ_G is the partial factor for permanent loading; γ_Q is the partial factor for variable loading.

• Ψ_0 is the factor that converts a variable action into its combination rule;

39/110

TIMBERTECH

Roberto Tomasi

ULS Value of Actions

CSA 086

verifications are carried out in terms of load carrying capacity :

 $V_{F} \leq V_{r}$

$$X_r = \phi F_x K_z K_k$$

 $F_x = f_x(K_D K_H K_{Sx} K_T)$, in which f_x is the specified strength associated to the action considered, MPa.

 K_z is a parameter that takes in account the influence of the size of the member on its strength;

 K_k is used to indicate all those parameters that depend on the geometrical properties of the member (Section modulus, Lateral stability factor, etc).

EN 1995 – 1 – 1

verifications are carried out in terms of stress:

 $\tau_{\rm d} \leq f_{\rm v.d}$

is the characteristic value of a strength X_{k} property;

is the partial factor for a material property; Υm k_{mod} is a modification factor taking into account the effect of the duration of load and moisture content.

TIMBERTECH

Roberto Tomasi

The modification factor k_{mod} plays the same roule of the modification factors of K_s and K_D in the formulation proposed in the CSA Standards; some considerations:

Load combination usually consists of different actions with different duration classes, the modification factor k_{mod} related to the variable action having the shortest duration

It accounts both for the viscous behaviour of wood of the load as well as for the moisture Italian Standard content;

k_{mod} values for different load-duration classes

	Permanent Action	Long- term Action	Medium-term Action	Short-term Action	Instantaneous Action	EN 1995-1-1
Service class 1	0.60	0.70	0.80	0.90	1.00	1.10

Italian standard

ULS factors	Υм
Solid timber	1.5
Connections	1.5

41/110 Rol

Roberto Tomasi

TIMBERTECH

Resistance of CLT elements

strength / stiffness graded of solid wood timber C24 (C16) acc. to EN
14081 (bending), or solid timber panel acc. to EN13353

Characteristic value of a single layer of the cross		layer of lamellas	solid timber panel		
laminated timber			timber layer based on boards according to EN 14081-1 ^a timber layer base on panels according to EN 13353 ^b		
bending strength		$f_{\sf m,lay,k}$	$k_{sys} \cdot f_{m,k}$	Ĵт,к	
tension strength	parallel	$f_{\rm t,0,lay,k}$	$k_{\mathrm{sys}} \cdot f_{\mathrm{t,0,k}}$	<i>f</i> t,0,к	
	perpendicular	∫t,90,Iay,k	$k_{ m sys} \cdot f_{ m t,90,k}$	<i>f</i> t,90,к	
compression strength	parallel	fc,0,lay,k	$k_{ m sys} \cdot f_{ m c,0,k}$	<i>f</i> с,0,к	
	perpendicular	$f_{ m c,90,lay,k}$	3,0		
shear strength cross plane	Shear	$f_{ m v,0,lay,k}$	3,5		
	Torsion	$f_{ m tor,lay,k}$	2,5		
shear strength in plane	Shear	$f_{\sf v,lay,k}$	2,3		
	rolling shear strengt ^h	$f_{\sf r,lay,k}$	0,7		
modulus of elasticity	parallel	$E_{0,lay,mean}$	1,05 \cdot $E_{0,mean}$	$E_{0,\mathrm{mean}}$	
	perpendicular	E _{90,lay,mean}	450		
shear modulus	parallel	$G_{0,lay,mean}$	G _{0,mean}		
rolling shear modulus ^e	perpendicular	$G_{ m r,lay,mean}$	65		

Ex: Austrian Annex of EC5 for CLT

MONCTON, December 1st 2015

42/110

TIMBERTECH

Roberto Tomasi

UNITRENTO

SERVICE CLASS according to Eurocode 5

Inside the building, dry and warm Outside the building but not directly exposed to rain and sun

Outside the building without protection, wet and cold

It is proposed, that the use of CLT in service class 3 is not allowed.

© Pictures: KLH

10-storey building Melbourne (AUS) | 2012 CLT by KLH

© Pictures: BBS

Kindergarden Innsbruck (AT) | 2008 CLT by Binderholz BS

© Pictures: AHEC Endless Stair London (GBR) | 2013 CLT by Imola Legno

* Temporary art installation

Layout presentation

- 1. Introduction
- 2. Cross laminated timber, the product and the constructive system
- 3. Comparison between the CSAO86 and Eurocode 5

4. Design example

TIMBERTECH

Roberto Tomasi

44/110

THE BUILDING

MONCTON, December 1st 2015

45/110

Roberto Tomasi

TIMBERTECH

UNITRENTO

Two storey residential building

TIMBERTECH

Roberto Tomasi

Two storey residential building

Ground floor

First floor

The pictures represent the plants of the ground and first floor.

MONCTON, December 1st 2015 47/110 **TIMBERTECH** Roberto Tomasi

UNITRENTO

Two storey residential building

Ground floor: bearing walls

Ground floor: model

The pictures represent the timber load-bearing walls of the structure and the corrisponding model in Timber Tech Buildings

MONCTON, December 1st 2015 49/110

TIMBERTECH

Roberto Tomasi

Two storey residential building

The building

The structure that we are going to analyse in this example is a two storey single-family residential building.

Loads

The loads acting on the structure are the following:

- $q_{live} = 2.00 \ kN/m^2$
- $q_{snow} = 1.20 \ kN/m^2$

Materials

Walls and floors are built with CLT panels with the following characteristics:

- total thickness: 100 mm
- 5 layers (20 mm per layer)
- Timber grade C24

UNITRENTO

Tension and shear connections

The connections used in the project are shown in the pictures below.

STRUCTURE VERIFICATION

Roberto Tomasi

51/110

TIMBERTECH

MONCTON, December 1st 2015

52/110

TIMBERTECH Roberto Tomasi

Design example

In this example we will check the structure for:

□ Vertical loads:

- CLT floors (bending, shear and compression perpendicular to the grain)
- CLT walls (instability)
- CLT lintels (bending, shear)
- ☐ Horizontal loads:
 - CLT walls (shear)
 - Connections (hold-down, angle brackets)

... following Eurocode 5 and ETA of the products

MONCTON, December 1st 2015

TIMBERTECH

54/110

Roberto Tomasi

UNITRENTO

DESIGN FOR VERTICAL LOADS: FLOORS

TIMBERTECH Roberto Tomasi

Design for vertical loads: floors

The single span floor that we analyse is highlighted in red and presents the following characteristics:

- span I = 2.94 m
- thickness t = 100 mm
- 5-layers CLT (20 mm per layer)
- Timber grade C24

The loads acting on the floor are:

g _{1,k} =	0.60	kN / m²	Characteristic value of the self-weight
g _{2,k} =	2.00	kN / m ²	Characteristic value of the permanent action
q _k =	2.00	kN / m ²	Characteristic value of the variable action

TIMBERTECH

Roberto Tomasi

Design for vertical loads: floors

The design load (ULS combination) per square meter is

 $q_d = 1.3 \cdot g_1 + 1.5 \cdot g_2 + 1.5 \cdot q = 1.3 \cdot 0.6 + 1.5 \cdot 2 + 1.5 \cdot 2 = 6.78 \ kN/m^2$

The design load per meter acting on the floor is $Q_d = q_d \cdot b = 6.78 \cdot 1 = 6.78 \ kN/m$

The maximum bending moment and the shear force can be calculated as

 $-E_0 / E_{90} \sim 30$ (possible cracks between the boards)

Shear Rigidity of the glued line and transversal layers assumed infinite

Bernoulli's hypothesis: the cross sections remain plane even during deformation BENDING STRESS SHEAR STRESS 7

TIMB

Rob

Roberto Tomasi

TIMBERTECH

Design for vertical loads: floors

The approach adopted for determining the bending properties of the CLT elements is the so called « γ method». The longitudinal layers are modeled as beam elements connected with "equivalent" fasteners with a stiffness dependent on the rolling shear stiffness of the cross layers.

EN 1995-1-1 Annex B "Mechanically jointed beams": Möhler theory

The effective moment of inertia can be taken as:

$$J_{eff} = \sum_{i=1}^{3} J_i + \gamma_i \cdot A_i \cdot a_i^2$$

Roberto Tomasi

Design for vertical loads: floors

Effective inertia of the section

The bending stiffness of the floor section is

$$J_{eff} = \sum_{i=1}^{3} J_i + \gamma_i \cdot A_i \cdot a_i^2 = 6.02 \cdot 10^7 \ mm^4 \qquad (MOHLER)$$

$$J_{eff} = \sum_{i=1}^{3} J_i + A_i \cdot a_i^2 = 6.6 \cdot 10^7 \ mm^4 \qquad (EULER-BERNOULLI)$$

$$J = \frac{b \cdot h^3}{12} = 8.3 \cdot 10^7 \ mm^4 \qquad J_{eff} = 0.73 \cdot J \qquad \lim_{mm} \left[\begin{array}{c} & & \\$$

The effective section modulus $W_{\rm eff}$ can be calculated (according to ETA) as the ratio of the effective bending stiffness to the mid-thickness of the panel

$$W_{eff} = \frac{J_{eff}}{h/2} = \frac{6.02 \cdot 10^7 mm^4}{100/2} = 1.2 \cdot 10^6 mm^3$$

TIMBERTECH Roberto Tomasi

Design for vertical loads: floors

Bending stresses: calculation with a simplified method

The maximum normal stress can be calculated dividing the bending moment by the effective section modulus:

$$\sigma_{m,d} = \frac{M}{W_{eff}} = \frac{7.33 \cdot 10^6 Nmm}{1.2 \cdot 10^6 mm^3} = 6.11 MPa$$

The design bending strength is

$$f_{m,d} = \frac{k_{mod} \cdot f_{m,k}}{\gamma_M} = \frac{0.8 \cdot 24}{1.5} = 12.8 MPa$$

Stress ratio

$$\frac{\sigma_{m,d}}{f_{m,d}} = \frac{6.11 \, MPa}{12.8 MPa} = 48\%$$

Distribution of normal stresses in the layers due to the bending action

Load duration class: medium term

$$k_{sys} = 1.1$$

(for n > 4 parallel interacting boards in the top layers)

TIMBERTECH

Roberto Tomasi

Design for vertical loads: floors Shear stresses in the longitudinal layers

The maximum shear stress occurs at the neutral axis position and shall not exceed the design shear strength. In this case it is localized in the central layer (2):

Shear failure in longitudinal layers

The maximum value of the shear stress can be evaluated using Jourawsky formulation

$$\tau_{d} = \frac{V \cdot S_{eff}}{J_{eff} \cdot b_{2}} = \frac{9970 \cdot 777200}{6.02 \cdot 10^{7} \cdot 1000} = 0.129 MPa$$
$$f_{v,d} = \frac{k_{mod} \cdot f_{v,k}}{\gamma_{M}} = \frac{0.8 \cdot 4}{1.5} = 2.13 MPa$$

The ratio of the design stress to the shear strength of the material is

$$\frac{\tau_d}{f_{\nu,d}} = \frac{0.129 \, MPa}{2.13 \, MPa} = 6.06\%$$

63/110

TIMBERTECH

Roberto Tomasi

Design for vertical loads: floors

Shear stresses in the transverse layers

Also the shear stress in the cross layers should be verified

Using Jourawsky formulation we have

$$\tau_d = \frac{V_{Ed} \cdot S_i}{J_{eff} \cdot b} = 0.12 MPa$$

Design rolling shear strength can be calculated as

$$f_{\nu,d} = \frac{k_{mod} \cdot f_{\nu,k}}{\gamma_M} = \frac{0.8 \cdot 1}{1.5} = 0,53 MPa$$

$$\frac{\tau_d}{f_{v,d}} = \frac{0.12 \ MPa}{0.53 \ MPa} = 22.64\%$$

The shear strength for rolling shear is approximately equal to twice the tension strength perpendicular to the grain (EN 1995)

MONCTON, December 1st 2015

64/110

Roberto Tomasi UNITRENTO

Design for vertical loads: floors

Compression perpendicular to the grain

According to the clause 6.1.5 of Eurocode 5, the design compression stress perpendicular to the grain can be evaluated as

$$\sigma_{c,90,d} = \frac{F_{c,90,d}}{A_{ef}} = \frac{F_{wall} + F_{floor}}{l_{ef}}$$

In the load combination

'wall

 $\sigma_{c,90,d}$

F_{floor}

 $1.3 \cdot G_1 + 1.5 \cdot G_2 + 1.5 \cdot Q_{snow}$

the values of the acting loads are analysed floor

 $F_{wall} = 13.14 \ kN/m$ $F_{floor} = 5.79 \ kN/m$

In this case the effective contact length should be assumed equal to the real contact length:

 $l_{ef} = l = 100 \text{ mm}$

The design compression stress can be calculated as

$$\sigma_{c,90,d} = \frac{F_{wall} + F_{floor}}{l_{ef}} = \frac{(13.14 + 5.79) \ kN/m}{0.1 \ m} = 0.19 \ MPa$$

Design for vertical loads: floors Compression perpendicular to the grain

The design compression strength perpendicular to the grain can be evaluated as

$$f_{c,90,d} = \frac{k_{mod} \cdot f_{c,90,k}}{\gamma_M} = \frac{0.9 \cdot 2.50}{1.5} = 1.5 MPa$$
 C

For the considered combination the load-duration class is short-term

Hence we can check the compression stress using the following formula:

$$\frac{\sigma_{c,90,d}}{k_{c,90} \cdot f_{c,90,d}} = \frac{0.19}{1.50 \cdot 1.5} = 8.4\% < 100\%$$

 $k_{c,90} = 1.5$ is a factor taking into account the load configuration and the degree of compressive deformation.

TIMBERTECH

66/110

Roberto Tomasi

UNITRENTO

DESIGN FOR VERTICAL LOADS: WALLS

The walls present the following properties:

- Height h = 2.80 m
- Thickness t = 100 mm

- 5-layer CLT panels (20 mm per layer)
- Timber grade C24

It is checked one of the most stressed wall on which acts a concentrated load, due to the presence of the support of a beam.

The load acting is given by the sum of the self-weight of the wall and the concentrated load, redistributed on a portion of the wall of lenght 0.58 m.

The wall self-weight (h=1.4 m), calculated for the considered ULS combination, is

 $q_{wall} = 2.35 \text{ kN/m}$

The reaction force of the beam, equal to 42 kN, acting on the verification area is

$$q_{point \ load} = \frac{42 \ \text{kN}}{0.58 \ m} = 72.41 \ kN/m$$

Hence the total load acting to be used for instability check is

$$q_{tot} = 2.35 + 72.41 = 74.76 \ kN/m$$

For CLT walls instability is possible only out-of-plane. The wall analysed is an internal wall which is not subjected to out-of-plane loads as the wind. To check a wall portion subjected to axial compression, clause 6.3.2 of EN 1995-1-1 can be used.

$$\frac{\sigma_{c,0,d}}{k_c \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \le 1$$

There are no loads out-of plane

The design compression stress is calculated as the ratio of the total vertical load to the effective cross-section area of the wall portion.

$$\sigma_{c,0,d} = \frac{N_{vert}}{A_{net}} = \frac{q_{tot} \cdot 0.58m}{t_{vert} \cdot 0.58m} = \frac{74.76 N/mm}{60 mm} = 1.25 MPa$$

$$A_{net}$$

$$I = 1.25 MPa$$

$$A_{net}$$

$$A_{net}$$

$$I = 1.25 MPa$$

To evaluate the stability of the CLT wall portion we can refer to the clause 6.3.2 of EN 1995-1-1 «*Columns subjected to either compression or combined compression and bending*» The design compression strength can be

The design compression strength can be evaluated as

$$f_{c,0,d} = \frac{k_{mod} \cdot f_{c,0,k}}{\gamma_M} = \frac{0.9 \cdot 21}{1.5} = 12.6 MPa$$

Load-duration class: short-term (snow)

Stability verification

Hence we can check the stability of the wall:

There are no loads perpendicular to the wall plane

 $\frac{1,25 \ MPa}{0.4 \cdot 12.6 \ MPa} = 24.80 \ \% < 100 \ \%$

71/110

TIMBERTECH

Roberto Tomasi

DESIGN FOR VERTICAL LOADS: LINTELS

In the considered ULS combination the distributed load acting on the analysed lintel is equal to 17.85 kN/m.

Bending

Torsional shear

Shear perp. to grain

The maximum design normal stress can be calculated using the following expression

$$\sigma_{m,d} = \frac{M_{Ed}}{W_{eff}} = \frac{5.02 \cdot 10^6 Nmm}{3.6 \cdot 10^6 mm^3} = 1.39 MPa$$

The bending strength (load-duration class: medium term) is

$$f_{m,d} = \frac{k_{mod} \cdot f_{m,k}}{\gamma_M} = \frac{0.8 \cdot 24}{1.5} = 12.8 MPa$$

$$\frac{\sigma_{m,d}}{f_{m,d}} = \frac{1.39 \text{ MPa}}{12.8 \text{ MPa}} = 10.8 \% < 100 \%$$

The stress ratio is

UNITRENTC

be calculated as:

 $t_1 = t_2 = t_3 = 20 mm$

 $\tau_x = \frac{v}{\sum t_{i,vert}}$ shear stresses perpendicular to the vertical layers

 $\tau_z = \frac{v}{\sum t_{i,oriz}}$ shear stresses perpendicular to the horizontal layers

$$\tau_x = \frac{33.48 \ N/mm}{40 \ mm} = 0.84 \ MPa$$
$$\tau_z = \frac{33.48 \ N/mm}{60 \ mm} = 0.56 \ MPa$$

CLT lintels

Shear: failure mechanism for shear perpendicular to grain

The maximum shear stress value $(\tau_x \text{ or } \tau_z)$ must be considered

76/110

$$\tau_d = \max(\tau_x; \tau_z) = 0.84 MPa$$

The design resistance in shear perpendicular to grain is

$$f_{v,perp,d} = \frac{k_{mod} \cdot f_{v,perp,k}}{\gamma_M} = \frac{0.8 \cdot 4}{1.5} = 2.13 MPa$$

The resistance verification to this failure mechanism is as follows

 $\frac{\tau_d}{f_{v,lastra,d}} = \frac{0.84 \text{ MPa}}{2.13 \text{ MPa}} = 39.44 \% < 100 \%$

MONCTON, December 1st 2015

TIMBERTECH Roberto Tomasi

CLT lintels

Shear: torsion failure on crossing surfaces

(a is the dimension of the crossing area)

torsional stress

$$\tau_{T,d} = \frac{M_T}{W} = \frac{188 \cdot 10^3 Nmm}{1.125 \cdot 10^6 mm^3} = 0.17 MPa$$

The design torsional strength of the material is

$$f_{T,d} = \frac{k_{mod} \cdot f_{T,k}}{\gamma_M} = \frac{0.8 \cdot 2.5}{1.5} = 1.33 MPa$$

The value of the design torsional moment M_T , acting on the glued surfaces at the intersection between boards, can be calculated using the expression reported in many European Technical Approvals (ETA)

77/110

$$M_T = \frac{v \cdot a^2}{n_{glued \, surfaces}} = \frac{v \cdot a^2}{n_{layers-1}}$$

$$M_T = \frac{33.48 \ \frac{N}{mm} \cdot 150^2 \ mm^2}{4} = 188 \cdot 10^3 \ Nmm$$

torsional section modulus

$$W = \frac{a^3}{3} = \frac{150^3}{3} = 1.125 \cdot 10^6 \ mm^3$$

torsional verification

$$\frac{\tau_{T,d}}{f_{T,d}} = \frac{0.17MPa}{1.33 \text{ MPa}} = 13 \% < 100 \%$$

MONCTON, December 1st 2015

78/110

TIMBERTECH

Roberto Tomasi

DESIGN FOR HORIZONTAL LOADS: SEISMIC ACTION

Center of mass

The floor diaphragms are considered perfectly rigid in-plane when calculating the distribution of lateral forces. Each diaphragm has three degrees of freedom: translation in x, translation in y and rotation around the z axis.

The figure below shows the position of the center of masses (seismic forces are applied to this point).

Center of mass

To take into account the uncertainties in the location of masses and in the spatial variation of the seismic motion, the calculated centre of mass at each floor shall be considered as being displaced from its nominal location in each direction by an accidental eccentricity.

Accidental eccentricity

$$e_x = \pm 0,05 \cdot L_x$$
$$e_y = \pm 0,05 \cdot L_y$$

where Lx or Ly are the floor dimensions perpendicular to the direction of the seismic action.

The deformation of the walls under horizontal loads can be evaluated by adding the different contributions of deformation:

- CLT panels
- tension connections (hold-down/tie-down)
- shear connections (angle brackets)

Roberto Tomasi

TIMBERTECH

Evaluation of the CLT walls stiffness

CLT panel deformation

The effective shear modulus of the CLT elements can be calculated using the following equation

$$G_{eff} = G_{0,mean} \cdot \frac{1}{1 + 6 \cdot \alpha_T \cdot \left(\frac{t}{a}\right)^2} = 690 \cdot \frac{1}{1 + 6 \cdot 1.51 \cdot \left(\frac{20}{150}\right)^2}$$

= 594 MPa

In which α_T is a correction factor

$$\alpha_T = 0.32 \cdot \left(\frac{t}{a}\right)^{-0.77} = 0.32 \cdot \left(\frac{20}{150}\right)^{-0.77} = 1.51$$

depending on

t: the mean thickness of the boards (20 mm) a: the width of the boards (if a is not constant for all the boards, a mean value should be used for approximation)

Roberto Tomasi UNITRENTC

Evaluation of the CLT walls stiffness

Hold-down deformation

With reference to the rigid body rocking and considering the rotational equilibrium around point O, there are:

- an overturning contribution due to the seismic force F
- a stabilizing contribution due to the vertical load N

The tension force in the hold-down can be calculated as:

h

$$\begin{bmatrix} T = \left(\frac{F \cdot h}{0,9 \cdot L} - \frac{N}{2}\right) & \text{active hold-down} \quad F \cdot h > N \cdot \frac{0,9 \cdot L}{2} \\ T = 0 & \text{not active hold-down} \quad F \cdot h \le N \cdot \frac{0,9 \cdot L}{2} \end{bmatrix}$$

- the first equation refers to the case in which the wall rotates because the overturning moment is greater than the stabilizing moment
- the second one refers to the case in which the wall does not rotate because the stabilizing moment is greater than the overturning moment

Evaluation of the CLT walls stiffness

Hold-down deformation

The tension force in the hold-down can be calculated as: $\begin{bmatrix}
T = \left(\frac{F \cdot h}{0,9 \cdot L} - \frac{N}{2}\right) & \text{active hold-down} & F \cdot h > N \cdot \frac{0,9 \cdot L}{2} \\
\end{bmatrix}$ $\begin{bmatrix}
T = 0 & \text{not active hold-down} & F \cdot h \le N \cdot \frac{0,9 \cdot L}{2}
\end{bmatrix}$

Introducing the hold-down stiffness it can be calculated the vertical displacement Δv and the horizontal displacement at the top of the wall

$$\Delta v = \frac{T}{k_h} \qquad \qquad \Delta u_{hold-down} = \frac{h}{0.9 \cdot L} \cdot \Delta v$$

Evaluation of the CLT walls stiffness

Shear-connections deformation

The rigid body translation of the wall due to the deformation of the angle brackets can be evaluated using the following expression

$$\Delta u_a = \frac{F}{k_a \cdot n_a}$$

being:

• k_a the stiffness of each connection

• *n_a* the number of connections

Stiffness of the wall

The total displacement at the top of the wall is given by the sum of all the deformation contributions

$$u_{wall} = \Delta u_{CLT} + \Delta u_{hd} + \Delta u_a$$

Therefore the stiffness of the wall can be evaluated as

$$k_{wall} = \frac{F}{u_{wall}}$$

Seismic action

Stiffness center

Once calculated the stiffness of the walls, it is possible to locate the centre of stiffness of each floor.

TIMBERTECH

Roberto Tomasi

86/110

Roberto Tomasi

Seismic action

The fundamental period of vibration of the building is

$$T_1 = C_1 \cdot H^{\frac{3}{4}} = 0.05 \cdot 5.6^{\frac{3}{4}} = 0.18 \, s$$

Behaviour factor

- Glued wall panels with glued diaphragms $q_0 = 2.00$
- The structure is regular in elevation so the factor K_R can be assumed equal to the unit $K_R = 1$

$$q = q_0 \cdot K_R = 2.00 \cdot 1 = 2.00$$

Floor masses

Floor	Height [m]	Translational mass [kg]	Rotational inertia [kg m²]
1	2.80	39892	591420
2	5.60	28380	448214

TIMBERTECH Roberto Tomasi

Seismic action

Linear-elastic analysis

The seismic analysis is performed according to the so called «lateral force method», which can be applied to buildings whose response is not significantly affected by contributions from modes of vibration higher than the fundamental mode.

The design spectrum at the ultimate limit state is depicted in the picture below

Limit state for the safeguard of human life

 $S_d(T_1) = 0.10 g$

The total base shear due to the seismic design action is

$$F_h = S_d(T_1) \cdot \frac{W}{g} = 0.1 \cdot 683 \ kN = 68.3 \ kN$$

Seismic action

Linear-elastic analysis

The equivalent static lateral forces can be evaluated using the following expression

$$F_i = \frac{F_h \cdot z_i \cdot W_i}{\sum_j z_j \cdot W_j}$$

Total base shear

 $F_h = 68.3 \ kN$

First storey

$$F_1 = \frac{68.3 \cdot 2.80 \cdot 399}{2.80 \cdot 399 + 5.60 \cdot 284} = 28.18 \ kN$$

Second storey

$$F_2 = \frac{68.3 \cdot 5.60 \cdot 284}{2.80 \cdot 399 + 5.60 \cdot 284} = 40.12 \ kN$$

MONCTON, December 1st 2015

90/110

TIMBERTECH

Roberto Tomasi

SEISMIC DESIGN: WALLS

Seismic design: walls

Check of the wall Y1 for the Ultimate Limit State "safeguard of human life", considering the following spatial combination of the seismic effects:

$$0.3 \cdot F_{SLV,x} - 1.0 \cdot F_{SLV,y}$$

with an accidental eccentricity of storey mass equal to -ex -ey.

The shear force acting on the considered wall is

 $V_{wall} = 7.17 \ kN$

Roberto Tomasi

Seismic design: walls

The analysed wall has the following characteristics:

- Lenght L = 2.55 m
- Height h = 2.80 m

Material CLT

- 5-layer CLT panels (20 mm per layer)
- Timber grade C24

Shear verification of the wall

There are two possible shear failure modes:

- Net shear (shear perpendicular to grain)
- Torsional shear failure of crossing surfaces between the orthogonal boards

See the shear verification of CLT lintels ...

MONCTON, December 1st 2015 **TIMBERTECH**

93/110

Roberto Tomasi

UNITRENTO

SEISMIC DESIGN: CONNECTIONS

Roberto Tomasi

Design of connections: hold-down

The analysed wall has the following characteristics:

- Lenght L = 2.55 m
- Height h = 2.80 m
- 1 hold-down on each wall corner

Acting forces:

- Vertical load N = 17.14 kN
- Shear force V = 7.17 kN
- Overturning moment M = 32.25 kNm

Two different cases are possible:

- the wall rotates because the overturning moment is greater than the stabilizing moment (active hold-down)
- the wall does not rotate because the stabilizing moment is greater than the overturning moment (not active hold-down)

Design of connections: hold-down

The tension force in the hold down is

 $T = \begin{cases} \left(\frac{M}{b} - \frac{N}{2}\right) \\ 0 \end{cases}$

Active hold-down

Not active hold-down

• b is the lever arm taken equal to

 $b = 0.9 \cdot L$

- N is the vertical load
- M is the overturning moment

In the present case the hold-down is active, therefore the tension force acting on it can be evaluated as

$$T = \left(\frac{M}{b} - \frac{N}{2}\right) = \left(\frac{32.25 \ kNm}{0.9 \cdot 2.55 \ m} - \frac{17.14 \ N}{2}\right) = 5.48 \ kN$$

MONCTON, December 1st 2015

95/110

Roberto Tomasi

TIMBERTECH

Roberto Tomasi

TIMBERTECH

Design of connections: hold-down

Hold-down resistance

The design resistance of the hold-down can be evaluated as the minimum among the resistance values of the following failure mechanisms:

- failure of the nails
- tension failure of the hold down
- tension failure of the threaded steel rod
- pull-out resistance of the anchor

Failure of the nailed connection

$$R_{c,d} = \frac{k_{mod} \cdot R_{c,k}}{\gamma_M} = \frac{1 \cdot 22 \ kN}{1.5} = 14.67 \ kN$$

Load-duration class: Instantaneous (seismic action)

 $R_{c,k} \quad \mbox{is the lateral characteristic resistance of the nailed connection as reported in ETA-11/0086 }$

Tension failure of the hold down

$$R_{c,d} = \frac{R_{s,k}}{\gamma_{M2}} = \frac{42 \ kN}{1.25} = 33.6 \ kN$$

- $R_{s,k} \quad \mbox{is the characteristic value of the tensile load-carrying-capacity of the hold down (steel) as reported ETA-11/0086 \quad \label{eq:Rsk}$
- γ_M is the partial safety factor for resistance of cross-sections in tension to fracture

Design of connections: hold-down

Tension failure of the threaded steel rod

$$R_{t,d} = \frac{0.9 \cdot f_{ub} \cdot A_s}{\gamma_{M2}} = \frac{0.9 \cdot 500 \, MPa \cdot 157 \, mm^2}{1.25 \cdot 1000} = 56.5 \, \text{kN}$$

 f_{ub} is the ultimate tensile strength of the rod steel

γ_{M2} is the partial safety factor for resistance of cross-sections in tension to fracture

Pull-out resistance

$$R_{pull,d} = \frac{R_{pull,k}}{\gamma_{Mc}} = \frac{108.57 \ kN}{1.8} = 60.32 \ kN$$

 $R_{pull,k}$ is the characteristic resistance for pull-out failure calculated for cracked concrete as reported in ETA-09/0078

 γ_{Mc} is the partial safety factor assumed according to ETA-09/0078

Design of connections: hold-down

Hold down resistance

The design resistance Rd of the hold-down is assumed as the minimum among the resistance values of the different failure modes

$$R_d = min.(R_{c,d}; R_{s,d}; R_{t,d}; R_{pull,d}) = 14.67 \ kN$$

In this case, the failure of the element is due to the nailing.

Check of the hold-down

$$\frac{T_{Ed}}{R_d} = \frac{5.48 \ kN}{14.67 \ kN} = 37.4\% < 100\%$$

UNITRENTC

Design of connections: angle brackets

The adopted angle bracket

TITAN TCN 200

30 «anker» nails 4,0 x 60

2 threaded rods M16 5.8

Chemical anchor

Shear force

The shear force acting on one angle bracket can be evaluated as follows

$$V_a = \frac{V}{n_{anc}} = \frac{7.17}{2} = 3.59 \ kN$$

where

- V is the design shear force acting on the wall
- n_{anc} is the number of the shear connections in the wall

Design of connections: angle brackets

The design resistance R_d of the connection can be calculated as the minimum of the resistance values associated to the following failure modes

- Shear failure of the angle bracket and/or of the nailed connection
- Shear failure of the steel anchors

Angle bracket resistance

 $R_{a,k}$

The design value of the connection resistance is

$$R_{a,d} = \frac{k_{mod} \cdot R_{a,k}}{\gamma_M} = \frac{1 \cdot 22.1}{1.5} = 14.7 \ kN$$

Check of the angle bracket

$$\frac{V_{Ed}}{R_d} = \frac{3.59}{14.7} = 24.4\% < 100\%$$

Thank you for your attention

TIMBERTECH

Roberto Tomasi

Roberto Tomasi

Dpt. of Civil, Environmental and Mechanical Engineering University of Trento Via Mesiano 77 - I 38123 TRENTO Tel. +39 0461 282529 e-mail roberto.tomasi@unitn.it

In collaboration with

Mauro Andreolli

Timbertech Via della Villa, 22/A I-38123 – Villazzano – Trento (TN) – Italy Tel. +39 0461 933376 e-mail info@timbertech.it\