

Sustainability and Building Assessments

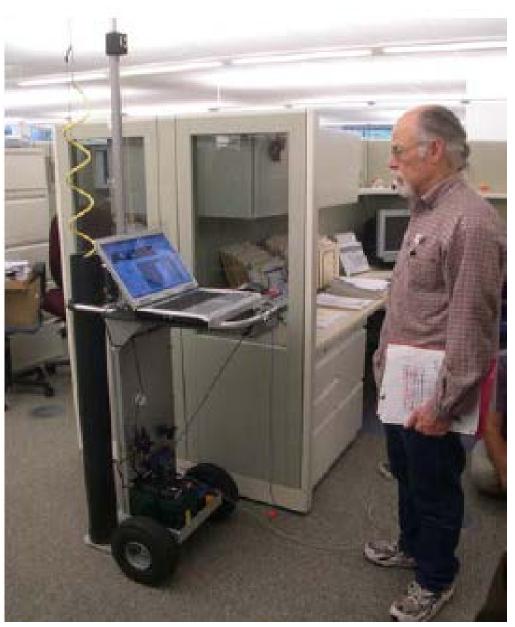
David C. Stewart MS P. Eng. David C. Stewart & Associates Inc. 902 266-3663

Green Globes Energy Star LITESENV On Living Building Star Challenge Ch STAR Communities BE²ST-In-Highways CalGreen Gr Sustainable Sites GreenStar

Need for a time and cost effective assessment and asset management tool

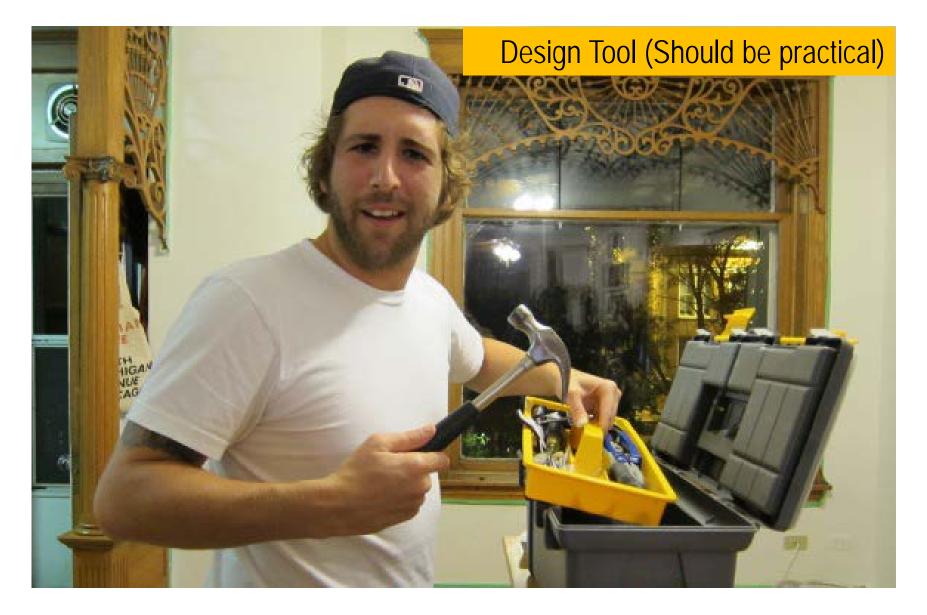
Rating system worldwide

Many countries have developed their own standards for green building or energy efficiency for buildings. Above some examples of bu currently in use:


- Image: Starte Starte
- 🔹 💽 Brazil: AQUA [7] 🖉 / LEED Brasil [8] 🖉
- 🔹 🚺 Canada: LEED Canada [9] 🖉 / Green Globes[10] 🖉
- 🔹 🎦 China: GBAS [11] 🖉
- Finland: PromisE[12] 4
- France: HQE[13] @
- Germany: DGNB[14] @ / CEPHEUS[15] @
- 🔹 🌆 Hong Kong: HKBEAM[16] 🖉
- India: GRIHA @National Rating System developed by TERI /LEED India
- 🔹 🚺 Italy: Protocollo Itaca[17] 🖗
- 🔹 🏧 Malaysia: GBI Malaysia[18] 🖗
- Mexico: LEED Mexico[19] @
- The second second
- Mew Zealand: Green Star NZ[21] @
- 🔹 🚺 Portugal: Lider A [22] 🖗
- Singapore: Green Mark[23] @
- 🔹 🔀 South Africa: Green Star SA[24] 🖉
- 🔹 🚾 Spain: VERDE
- Hereitzerland: Minergie[25] @
- 🔹 💻 United States: LEED[26] @ / Living Building Challenge[27] @ / Green Globes[28] @ / Build it Green[29] @ / NAHB NGBS[30] @
- Image: BREEAM[31]

Assessment Emphasis

Benchmarking


Rigorous Science vs. User Friendliness

Assessment Emphasis

Assessment Emphasis

Federal Sustainable Strategy for Canada

As of April 1, 2012 and pursuant to departmental strategic frameworks

	8.1 Target new construction and build-to-lease projects and major renovation projects will achieve an industry-recognized level of high environmental performance. Green Globes Design -3 Globes, LEED NC
Evinonent Evinonent Canta	Silver
PLANNING FOR A SUSTAINABLE FUTURE: A FEDERAL SUSTAINABLE DEVELOPMENT STRATEGY FOR CANADA Sustainable Development Office Environment Canada	8.2 Target: existing crown buildings over 1000 m ² will be assessed for environmental performance using an industry-recognized assessment tool. Green Globes , BOMA BESt
October 2010	8.3 Target: new lease or lease renewal projects over 1000 m ² , where the Crown is the major lessee, will be assess for environmental

Canada

- 8.3 Target: ... new lease or lease renewal projects over 1000 m², wh the Crown is the major lessee, will be assess for environmental performance using an industry-recognized assessment tool. BOMA BESt, or eq.
- 8.4 Target: ... fit-up and refit projects will achieve an industry-recognized level of high environmental performance. Green Globes Fit-up -3 Globes, LEED CI Silver

North America

GSA Report on Green Building Certification Systems

U.S. DEPARTMENT OF ENERGY Prepared for the U.S. General Services Administration under U.S. Department of Energy Contract DE-AC05-76RL01830	PNNL-20966
Green Building Certifica Review	ation System
N Wang KM Fowler RS Sullivan	
March 2012	
F	Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

GSA screened 180 certification systems.

Three identified systems

- 1. Green Globes
- 2. LEED
- 3. International Living Building Challenge

GSA Report on Green Building Certification Systems

besits into beigs building The Energy Performance Online is performance. Energy Performance Online is performance. Energy Performance Online is performance. LED requires a minimum DREROY STAR Locor of 63, witch its experiments and expert is not expected energy. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. Lis to take the periments and the specific energy adalable. Lis to take the periments its experiments. Lis to take the periments. The Lore Direct perimance. The Lore Direct periments.	Energy			
besits into beigs building The Energy Performance Online is performance. Energy Performance Online is performance. Energy Performance Online is performance. LED requires a minimum DREROY STAR Locor of 63, witch its experiments and expert is not expected energy. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. LED requires a minimum DREROY STAR Locor of 63, witch its experiments. Lis to take the periments and the specific energy adalable. Lis to take the periments its experiments. Lis to take the periments. The Lore Direct perimance. The Lore Direct periments.	Review Questions	Green Globec (CIEB)	LEED (EB)	Living Building Challenge (Renovation)
net a summer Pedral specific result of dealty detections DRRAY STAK beschwarting specific result and specific result are transition to the specific result of the result of the specific result of the result of	Energy Efficiency			
comparison? Init End of the second of the s	Does the metric help a building meet a surrent Federal requirement?	based. Credit is directly derived from ENERGY STAR benchmarking protocol and uses the credit earning threshold of 75 percentile, the same threshold that ENERGY STAR uses to award an ENERGY STAR label. 1.1 Energy Performance 1.2 Lighting 1.3 Bollers 1.4 Controls 1.5 Hot Water	stringent than GP. LEED gives more points for better performance. EA Prerequisite 2: Minimum Energy Efficiency Performance	requirement. Living Building Chailenge frames energy efficiency in the context of the carrying capacity of the site, and as such, requires that the project performs within this parameter. When the Scale Jumping overlay is used by project teams to achieve Net Zero Energy, they are required to demonstrate that a project's demand does not exceed the proportional amount of energy available. The institute emphasizes the primary strategy of optimizing energy efficiencies prior to installing renewable energy systems.
equilments to solview the retro? ENERGY STAR Portfolo Manager nia Not datadards or fools are squind for the metrio? ENERGY STAR Portfolo Manager nia Does the metrio holp a building retro accurate foderal squiment? The GG CIEB points are achieved the GP will be met. If the LEED EB points are achieved the GP will be met. To achieve Net Zero, onsite renewable is necessary. Not is the baseline or point of squiment? Building total energy use D7 Net Zero Energy O7 Net Zero Energy Not is the space of equiment? Poly. to >10% Sublex energy use Nia State Energy Poly. to >10% Sublex energy use Nia State State accurate for deal equiments to achieve the head off Poly. to >10% State energy use Nia State Generation and urphases of sequiments to achieve the head off No -equal points are awarded for offsite generated electricity. Yes Yes - purchase of green power solution of the deal solution of the documentation the space of green power No -equal points are awarded for offsite generated electricity. Yes Yes - purchase of green power not allowed to meet the LBC. Measurement and Verifition work is owned height to build build be to build build be active of green power not allowed to meet the LBC. EA Freeduate 2: Minimum Energy Efficiency Performance 1:1 Energy Head for the metrion 0: Acrealt	What is the baseline or point of comparison?	ENERGY STAR	ENERGY STAR	Na
equination to the metho? Intervention and the solution of the solutis of the solution of the solution of the sol	What is the range of requirements to achieve the metric?	80 points spread over ENERGY STAR scores of 75 – 100 percentile	69-95%	nis
Nows the metric help a building met a outmit Pederal equirement? If the OB OEEB points are achieved the OP will be met. To achieve Net Zero, onsite renewable is necessary. 1.7 Green Energy 1.7 Green Energy EA Credit 4: On-site and Off-site Renewable Energy 07 Net Zero Energy Vhat is the baseline or point of comparison? Buildings total energy use Na Na Vhat is the range of equirement's onlive the metric? -0% to >10% 3%-12% renewables 25%-100% certificates Na Son-alte generation and urbitage generation and urbitageneration and urbitagen	What standards or tools are required for the metric?	ENERGY STAR Portfolio Manager	EnergyStar Portfolio Manager	n/a
neet a ourrent Federal squirement? 1.7 Green Energy DT Net Zero Energy DT Net Zero Energy Natis Ethe baseline or point of omparison? Building total energy use DT Net Zero Energy Na Vehal is the baseline or point of omparison? Building total energy use Na Na Vehal is the range of equirements to aohieve the netrio? >2% to >10% Sign-12% renewables 25%-100% certificates Na constite generation and unobases of green power restor differently? No - equal points are awarded for offsite generated electricity. Yes Yes - purchase of green power not allowed to meet the LBC. weasurement and Verifit weasurement? Allough energy monitoring is included in Green Globes EB it does not specifically address actual metring, nor does it include all utilites. LEED EB meets the GP for energy meters. specifically address actual metring, nor does it include all utilites. Allough energy Efficiency Performance 1.11 Energy Vehangement, Monitoring, and Targeting 1.14 Sub-metering. Allough energy Management, Monitoring, and Targeting 1.14 Sub-metering. Na Allough energy Management, Monitoring and Targeting. There is also sub-metering in section 1.14 Sub-metering. Na Na What standards or tools are requirement for the metrice? n/a Na Na	On-Site Renewable Ener			
equimonent? 1.7 Green Energy EX Credit 4: Consile and Off-site Renewable Energy D7 Net Zero Energy what is the baceline or point of pulling total energy use Buildings total energy use n/a omparison? SN to >10% SN to >10% SN to >10% SN to >10% what is the page of energy or power SN to >10% SN to >10% SN to >10% SN to >10% sourchase of green power No - equal points are awarded for offsite generated electricity. Yes Yes - purchase of green power not allowed to meet the LBC. workset on effort help a building total energy monitoring is included in Green Globes EB It does not LEED EB meets the GP for energy meters. Measurement and verification is fundamental to the documentation is fundamental to the documentation is specifically address actual metering, nor does it include all utilities. EA Prerequisite 2: Minimum Energy Efficiency Performance Measurement and werification is fundamental to the documentation the Energy and Water Petal requirements in the Living Building Challenge. 1.1 Energy Hertomance 1.1 Energy Hertomance EA Credit 1: Optimize Energy Efficiency Performance Challenge. Challenge. Challenge. 1.14 Energy Use cannot be monitored without metering. Therefore, metering is necessarily implied in section 1.11 Energy Management, Monitoring and Targeting. N/a N/a What stofandardis or bools are equilered for of bools		If the GG CIEB points are achieved the GP will be met.	If the LEED EB points are achieved the GP will be met.	To achieve Net Zero, onsite renewable is necessary.
comparison? No	meet a ourrent Federal requirement?	1.7 Green Energy	EA Credit 4: On-site and Off-site Renewable Energy	07 Net Zero Energy
equirements to ablieve the hetero? 25%-100% certificates 25%-100% certificates consists of generation and urphases of green power readed differently? Yes Yes - purchase of green power not allowed to meet the LBC. weasurement and Verific Keasurement and Verification is included in Green Globes EB it does not a current Federal equirement? Athough energy monitoring is included in Green Globes EB it does not specifically address actual metering, nor does it include all utilities. LEED EB meets the GP for energy meters. Measurement and verification is fundamental to the documentation for the Energy and Water Petal requirements in the LIVing Building (14 Buchmetering) need a current Federal equirement? 1.1 Energy Performance 1.11 Energy Management, Monitoring, and Targeting 1.14 Buchmetering. Therefore, metering is necessarily implied in section 1.11 Energy Management, Monitoring and Targeting. There is also sub-metering in section 1.11 Energy Management, Monitoring and Targeting in section 1.14 Energy Management, Monitoring and Targeting. There is also sub-metering in section 1.14 Energy Management, Monitoring and Targeting in section 1.14 Energy Management, Monitoring is section 1.14 Energy Management, Monitoring and Targeting. N/a N/a	What is the baseline or point of comparison?	Building total energy use	Buildings total energy use	n/a
urohases of green power mated differently? Athough energy monitoring is included in Green Globes EB it does not solve the metrino help a building neet a surrent Federal sequirement? Athough energy monitoring is included in Green Globes EB it does not specifically address actual metering, nor does it include all utilities. LEED EB meets the GP for energy meters. Measurement and verification is fundamental to the documentation is the Energy and Water Petal requirements in the Living Building Challenge. 1.1 Energy Performance 1.11 Energy Use cannot be monitored without metering. Therefore, metering is necessarily implied in section 1.11 Energy Management, Monitoring and Targeting. There is also sub-metering in section 1.14 Sub-metering. Na Nia	What is the range of requirements to achieve the metric?	>0% to >10%		nis
Note the metrino help a building neet a surrent Pederal sequirement? Athough energy monitoring is included in Green Globes EB it does not specifically address actual metering, nor does it include all utilities. LEED EB meets the GP for energy meters. Measurement and verification is fundamental to the documentation is the Energy and Water Petal requirements in the Living Building Challenge. 11 Energy Performance 1.11 Energy Use cannot be monitored without metering. Therefore, metering is necessarily implied in section 1.11 Energy Management, Monitoring and Targeting. At a const the is also sub-metering in section 1.14 EA Vhat standards or tools are equired for the metrin? n/a n/a n/a	is on-site generation and purchases of green power treated differently?	No - equal points are awarded for offsite generated electricity.	Yes	Yes - purchase of green power not allowed to meet the LBC.
neet a ourrent Federal specifically address actual metering, nor does it include all utilities. EA Prerequisite 2: Minimum Energy Efficiency Performance the Energy and Water Petal requirements in the Living Building squirement? 1.1 Energy Performance EA Prerequisite 2: Minimum Energy Efficiency Performance the Energy and Water Petal requirements in the Living Building 1.1 Energy Management, Monitoring, and Targeting 1.14 Sub-metering EA Credit 1: Optimize Energy Efficiency Performance the Energy and Water Petal requirements in the Living Building Energy Use cannot be monitored without metering. Therefore, metering is necessarily implied in section 1.11 Energy Management, Monitoring and Targeting in section 1.14 Sub-metering. n/a What standards or tools are equired for the metric? N/a n/a n/a	Measurement and Verifi			
equired for the metric?	Does the metric heip a building meet a current Federal regulrement?	specifically address actual metering, nor does it include all utilities. 1.1 Energy Performance 1.11 Energy Management, Monitoring, and Targeting 1.14 Sub-metering Energy Use cannot be monitored without metering. Therefore, metering is necessarily implied in section 1.11 Energy Management, Monitoring and Targeting. There is also sub-metering in section 1.14	EA Prerequisite 2: Minimum Energy Efficiency Performance	
	What standards or tools are required for the metric?	Nb	n/a	n/a
	Benchmarking			

Source: http://www.gsa.gov/portal/content/131983

Similar issues

"Green Globes Tops LEED in Federal Review, but barely" BuildingGreen.com

Certification System	Federal Requirement Met	Federal Requirement Met if Point Achieved	Federal Requirement Could be Met	Not Specifically Mentioned
Green Globes	0	10	15	2
LEED	4	7	9	7
Living Building Challenge	12	0	3	12

Table ES.3: Summary of Robustness Criteria for New Building Construction

GSA

For new construction, the ability of Green Globes and LEED projects to meet federal standards without extra effort is fairly well matched.

Source: http://www.buildinggreen.com/auth/article.cfm/2012/5/9/Green-Globes-Tops-LEED-in-Federal-Review-But-Barely

October 25, 2013, GSA recommended that the US government agencies use one of two green building certification systems that best suit agency missions and portfolio needs:

the Green Building Initiative's Green Globes[®] (2010) and

the U.S. Green Building Council's Leadership in Energy and Environmental Design[®] (2009).

Green Globes is....

...an on-line guidance and assessment tool which promotes sustainability through:

- Integrated design for new construction
- Continuous improvement of existing buildings.

Green Globes Design Checklist

Green Globes

- In Canada, BOMA BESt (for Existing Buildings) is licensed and operated by BOMA Canada (since 2005).
- In the United States Green Globes is licensed and operated by the Green Building Initiative (since 2005)
- now ANSI standard (2010).
- University Campus Assessment licensed to APPA (2013).
- Other Green Globes products in Canada are operated by ECD Energy and Environment Canada Ltd.

ANSI/GBI 01-2010	ANSI	GBI	01-2010
------------------	------	------------	---------

Green Building Assessment Protocol for Commercial Buildings

An American National Standard

April 1, 2010

OTICE:

2.2010 Green Building Initiative, Inc. All rights reserved. Any copying or redistribution of this focument or any of its contents without GBU's prior written content is strictly prohibited. Your sourcestion and use of this document and its contents are subject to the terms and conditions of an End User License Agreement with Green Building Initiative, Inc.

thegbi.org + CORPORATE OFFICE: 2104 S.E. Morrison, Portland, OR 97214

Green Globes Assessment Toolbox

GG New construction

GG Existing buildings

Guides design and construction of new buildings (ANSI Standard)

Assess and improve existing base buildings

Guides design of interior <u>spaces</u>.

Fit-up (CI)

Guides design of green homes

Building Emergency Management

Building Intelligence Quotient

Assess Emergency Preparedness

Evaluate how "smart" buildings are

Green +Productive Workplace

Assess and improve occupant <u>behaviors</u>

Assess energy and environmental

university campuses

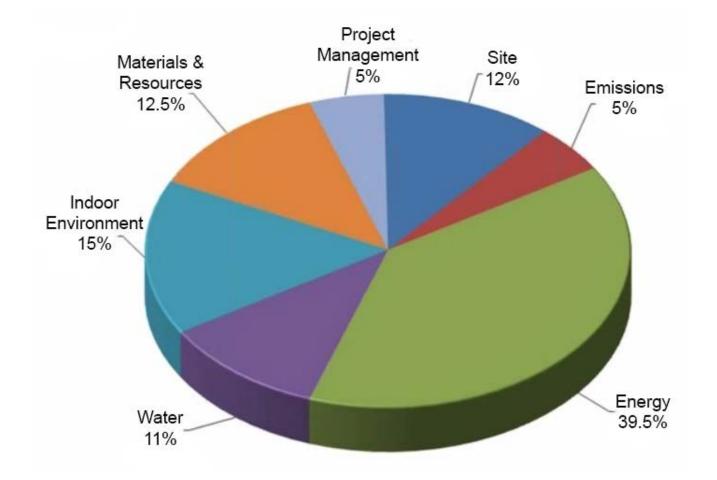
performance of

U Campus Energy and Sustainability Assessment

Safe and Sustainable Communities

Guides the creation of resilient and sustainable community

Attributes


7 Areas of Assessment

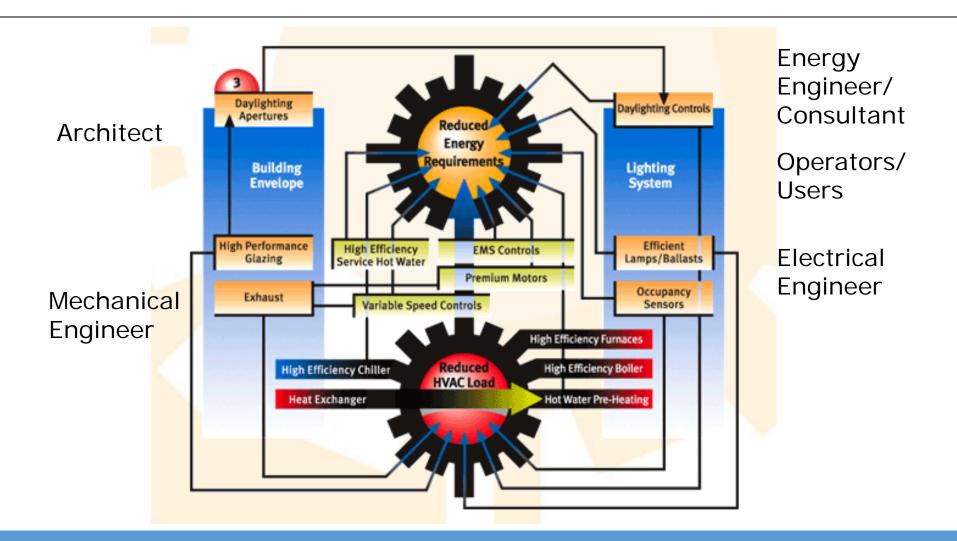
New Construction

- 1. Project/Environmental Management
- 2. Site
- 3. Energy
- 4. Water
- 5. Resources
- 6. Emissions and effluents
- 7. Indoor Environment

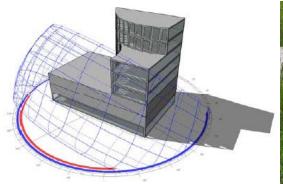
GREEN GLOBES Environmental Assessment Areas

1000-points= 100%

- Integrated Design Process
- Environmental Management During Construction
- Commissioning



Integrated Design Process

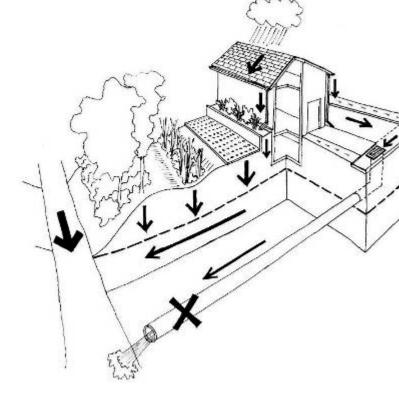


....key to high performance, sustainable buildings

- Development Area
- Ecological Impacts
- Storm Water Management
- Landscaping
- Exterior Light Pollution
- Site Innovation

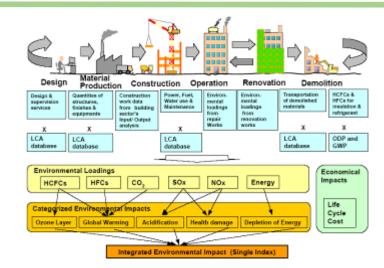
- Energy Performance
- Energy Demand
- Measurement & Verification
- Building Opaque Envelope
- Lighting
- HVAC Systems & Controls
- Other Equipment and Measures
- Renewable Energy
- Energy Efficient Transportation
- Energy Innovation

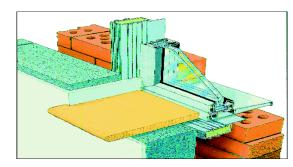
Energy- Performance "Putting the Building on Carbon Diet"


ASHRAE Climate Zones Canada

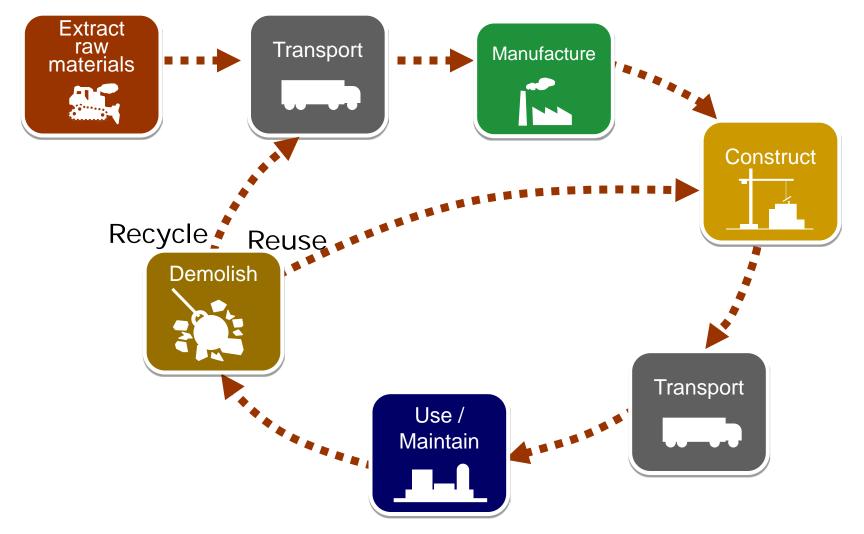
Offices TOTAL CARBON DIOXIDE EMISSIONS (kg/sqft/yr)					
Zone 5	Zone 6	Zone 7	Zone 8	POINTS	
16.85	16.17	15.37	14.44	8	
15.17	14.57	13.86	13.02	16	
13.48	12.96	12.34	11.61	24	
11.80	11.35	10.82	10.19	32	
10.11	9.75	9.30	8.78	40	
8.43	8.14	7.79	7.36	48	
6.74	6.53	6.27	5.95	56	
5.06	4.93	4.75	4.53	64	
3.37	3.32	3.24	3.11	72	
1.69	1.71	1.72	1.70	80	

- Water Consumption
- Cooling Towers
- Boilers and Water Heaters
- Water Intensive Applications
- Water Treatment
- Alternate Sources of Water
- Metering
- Irrigation




5. Materials & Resources

- Building Assembly (LCA)
- Interior Fit-Outs (LCA)
- Re-Use of Existing Structures
- Waste
- Building Service Life Plan
- Resource Conservation
- Envelope Roofing/Openings
- Envelope Foundation/Waterproofing
- Envelope Cladding
- Envelope Barriers
- Resource Innovation



Building materials – cradle to cradle

Key environmental impacts

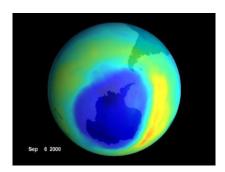
Global

Warming

Potential

Air Pollution Health Respiratory Effect

Smog


Acidification

Primary Energy Consumption

Resource Depletion (Resource Use)

Ozone Depletion

Water Pollution-Eutropthication

Materials & Resources Life Cycle Assessment (LCA)

Athena EcoCalculator for Commercial Assemblies

KOMOKA COMMUNITY WELLNESS AND RECREATION CENTRE

ECOCALCULATOR RE	SULTS	PRIMARY	ſ	GLOBAL WAR	RMING	RESOURCE	ſ	AIR	ſ	WATER	
		ENERGY	1	POTENTIAL	1	DEPLETION	1	POLLUTION	1	POLLUTION	I
BASE DESIGN	QTY	41718		2341		6223		469941		88695	
	UNITS	GJ		tCO2e		tonnes		litres		litres	
BLOCK	QTY	41321		2309		5687		464536		<mark>88698</mark>	
FOUNDATIONS	+/- %		-0.95%		-1.37%		-8.61%		-1.15%		0.00%
MOD BIT	QTY	40893		2306		6186		448064		<mark>88694</mark>	
FLAT ROOFING	+/- %		-1.98%		-1.50%		-0.59%		-4.66%		0.00%
4-PLY	QTY	64048		3044		7116		662429		88755	
FLAT ROOFING	+/- %		53.53%		30.03%		14.35%		40.96%		0.07%
TPO	QTY	42427		2350		6138		501472		88368	
ALL ROOFING	+/- %		1.70%		1.78%		7.93%		7.95%		-0.37%
MOD BIT	QTY	40157		2253		6035		441338		88365	
ALL ROOFING	+/- %		-3.74%		-3.76%		-3.02%		-6.09%		-0.37%
BLOCK for STEEL	QTY	39838	I	2136		6421		432754		4465	
CLADDING	+/- %		-4.51%		-8.76%		3.18%		-7.91%		-94.97%
FLOORS	QTY	41374		2336		6341		472710		<mark>88491</mark>	
ALL PRECAST	+/- %		1.18%		1.30%		2.51%		5.50%		-0.23%
INT. WALLS	QTY	43044		2443		6364		485072		88580	
ALL BLOCK	+/- %		-32.79%		-19.74%		-10.57%		-26.77%		-0.20%

Materials & Resources Environmental Impact Declaration (EPD)

Softwood Lumber – Canadian Wood Council

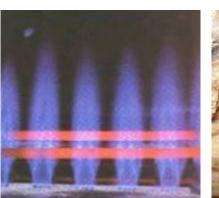
LIFECYCLE IMPACT CATEGORIES

The environmental impacts listed below were assessed throughout the product's lifecycle – including raw material extraction, transportation, manufacturing, packaging, use, and disposal at end of life.

	ATMOSPHERE			WATER		EARTH	
		0				2	B
	Global Warming Potential refers to long-term changes in global weather patterns – including temperature and precipitation – that are caused by increased concentrations of greenhouse gases in the atmosphere.	Ozone Depletion Potential is the destruction of the stratospheric ozone layer, which shields the earth from ultraviolet radiation that's harmful to life, caused by human-made air pollution.	Photochemical Ozone Creation Potential happens when sunlight reacts with hydrocarbons, nitrogen oxides, and volatile organic compounds, to produce a type of air pollution known as smog.	Acidification Potential is the result of human- made emissions and refers to the decrease in pH and increase in acidity of oceans, lakes, rivers, and streams – a phenomenon that pollutes groundwater and harms aquatic life.	Eutrophication Potential occurs when excessive nutrients cause increased algae growth in lakes, blocking the underwater penetration of sunlight needed to produce oxygen and resulting in the loss of aquatic life.	Depletion of Abiotic Resources (Elements) refers to the reduction of available non- renewable resources, such as metals and gases, that are found on the periodic table of elements, due to human activity.	Depletion of Abiotic Resources (Fossil Fuels) refers to the decreasing availability of non- renewable carbon- based compounds, such as oil and coal, due to human activity.
TRACI	72.64 kg CO2 eq.	0 kg CFC-11 eq.	14.51 kg O3 eq.	42.25 H+ moles eq.	0.0326 kg N eq.	0.11 kg	1113.01 MJ

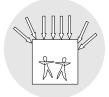
Materials & Resources Environmental Impact Declaration (EPD)

Work Chair- Steelcase

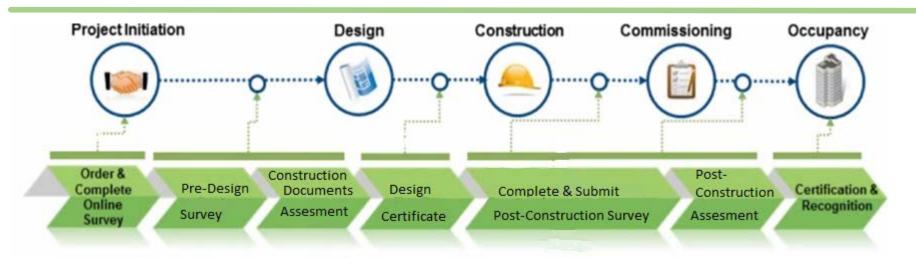

Distribution of the environmental impacts for the relevant life cycle stages

	Category	Unit	Total	Materials	Production	Transport	End of Life	
				٩		P	٨	
-0.	Global warming	[g CO _Z -eq.]	102 610.0	67 800.0	27 700.0	3 720.0	3 390.0	
	Ackilfication	[g SO _Z -eq.]	836.6	535.0	266.0	35.3	0.3	
	Eutrophication	[g NO ₃ -eq.]	712.2	471.0	179.0	59.2	3.0	
	Photochemical smog	[g C ₂ H ₄ -eq.]	24.2	18.0	0.8	4.6	0.7	

- Heating (NOx)
- Cooling (Green House Gasses)
- Janitorial Equipment



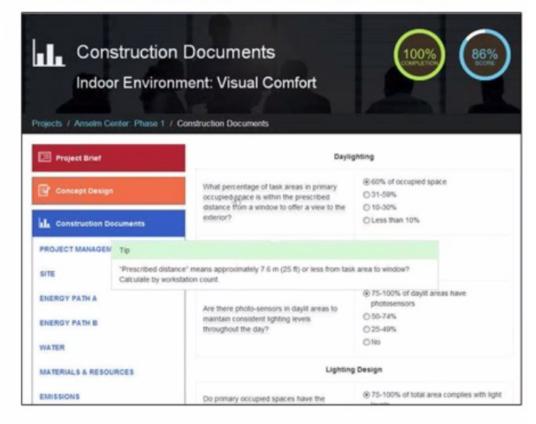
- Ventilation
- Indoor Pollutants
- Lighting Design and Systems
- Thermal Comfort
- Acoustic Comfort



Assessment Process

GREEN Green Globes Canada for New Construction: GLOBES Rating and Certification Process

- 1. Order and start completing online survey
- 2. Complete Pre-Design Survey provides Environmental Intent
- 3. Design Assessment (Construction Documents) design review includes written report, recommendations and design certification
- 4. Post-Construction survey- updates the online questionnaire to reflect design changes, if needed
- 5. Post-Construction Assessment review of implementation and changes during the construction
- 6. Certification and public recognition of achievement

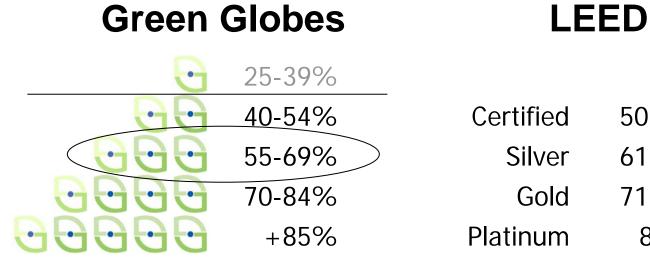


Green Globes for New Construction: Online Evaluation

Online Evaluation Features

- Web-based
- Includes all Green Globes NC and criteria, which are clearly identified
- Access to different "Phase" surveys:
 - I. Pre-Design
 - II. Schematic Design
 - III. Construction Documents
 - IV. Post-Construction (upon completion of Construction Documents)
- The user interface is easier to navigate between surveys, sections (e.g. Energy, Water, etc.), and sub-sections (e.g. Renewable Energy, Energy Demand, etc.)
- Hover over questions for ToolTip guidance and references
- Create a printer-friendly version of the evaluation with your completed answers
- Phase III and IV surveys workflow creates less repetitive data entry

Screenshot mock up of new GG NC survey in development


Green Globes for New Construction: Green Globes Rating Scale

Once an assessment is verified by a third party, buildings achieving a score of 25% or greater receive a Green Globes rating based on the percentage of total points earned

25-39%	6	1 Green Globe To participate in the Green Globes Eco-Rating Program, a building design must have identified and initiated some measures to improve the energy and environmental performance such as energy use reduction strategies, water conservation steps, waste reduction, etc. A key component should be a commitment to a set of guiding environmental principles.
40-54%		2 Green Globes This designation indicates that the design has moved beyond awareness and commitment to sound energy and environmental design practices, and has demonstrated good progress in reducing environmental impacts.
55-69%	CCC	3 Green Globes This designation indicates excellent progress in achieving eco-efficiency results through current best energy and environmental design practices.
70-84%		4 Green Globes This designation indicates leadership in terms of energy and environmental design practices and commitment to continuous improvement and industry leadership.
more than 85%	CCC	5 Green Globes This designation is reserved for select building designs, which are serving as national or world leaders in energy and environmental performance, and are introducing design practices that can be adopted and implemented by others.

Green Globes NC-LEED: Harmonization between Systems

Certified	50-60%
Silver	61-70%
Gold	71-80%
Platinum	81+%

Canada - 5 Globes USA - 4 Globes

Case Studies

Case Study Scotiabank Laval East, Quebec

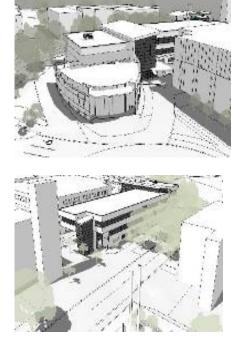
Design Highlights

John Surridge, Architect

- Energy-efficient lighting fixtures and lightshelves
- Energy-efficient HVAC equipment
- TRANE Building control systems
- Natural ventilation system through trickle vents

Case Study Queen's University, Kingston

B+H Architects


Design Highlights

- · Good use of daylighting
- Hands-on experience of environmental systems & "breathing wall"

Case Study

O Fipke Multi Purpose Academic & Research Facility UBC, Kelowna

Kasian Architecture

Design Highlights

- 46% more energy efficient than MNECB (In slab radiant heating and cooling Aquifer geothermal energy system)
- · Passive ventilation system and passive cooling

Case Study

Academic Building (Canal) Carleton University, Ottawa

Griffiths Rankin Cook Architects Moriyama and Teshima Architects

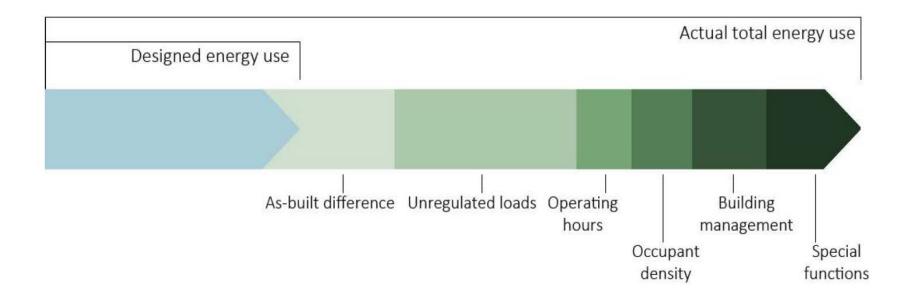
Design Highlights

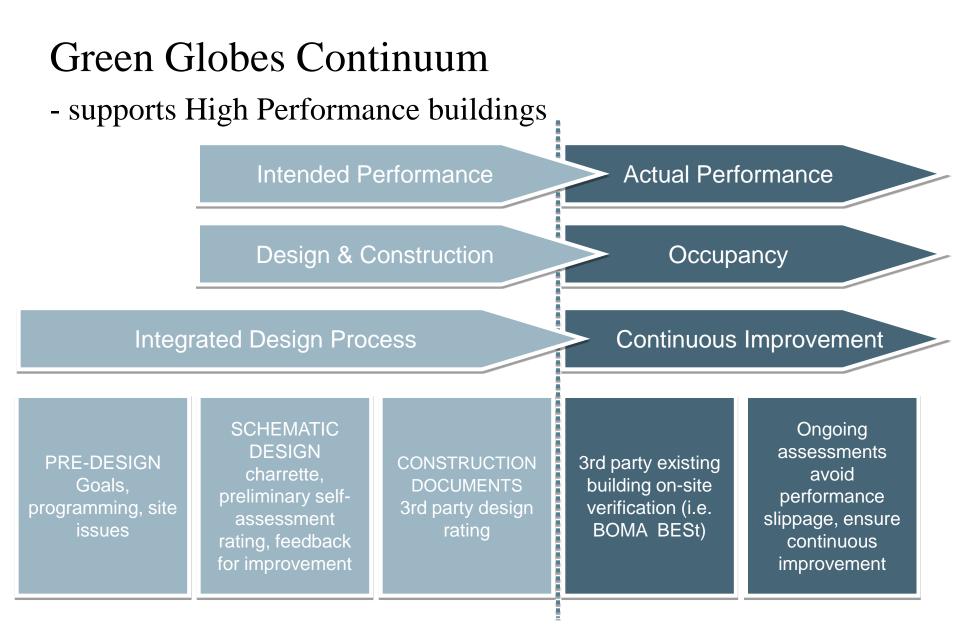
- 34% more energy efficient than MNECB, state-of-the-art automation system and occupancy controlled lighting
- West-facing wall with "fins" shade windows, 10-kilowatt solar array and a green roof

Case Study

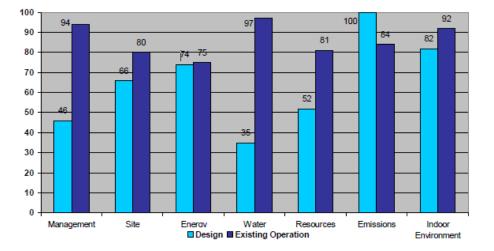
DNR District Office, Richibucto, New Brunswick

Design Highlights


- 56% more energy efficient than MNECB (Ground source vertical closed loop heat pump system)
- Conventional, cost efficient sustainability measures

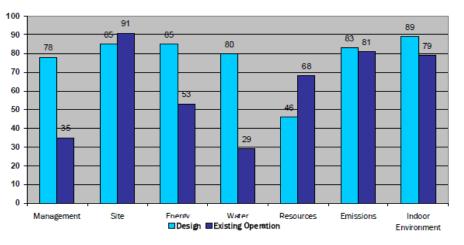

How the Building Perform?

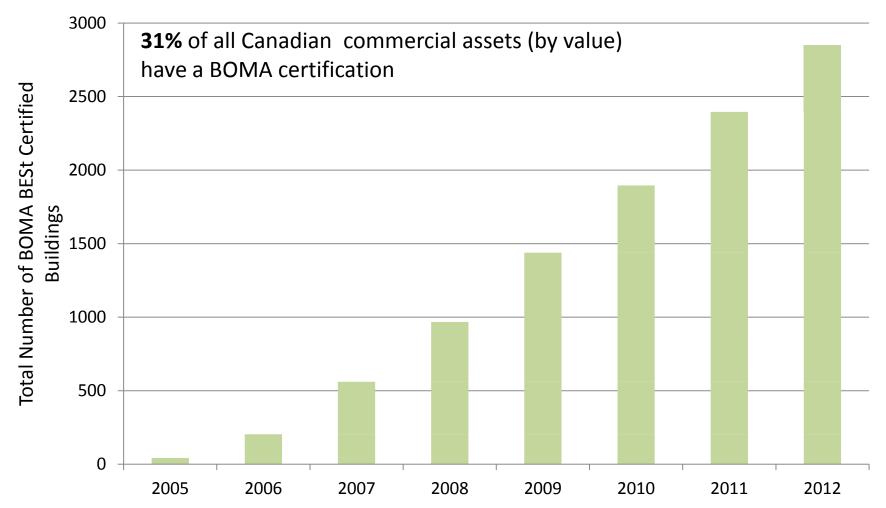
Design v. Operational Energy


Comparison of the designed and the actual total energy use of a building

[Adapted from (CarbonBuzz, 2013), ratio of bars adapted from (Carbon Trust, 2011)].

Green Globes Continuum

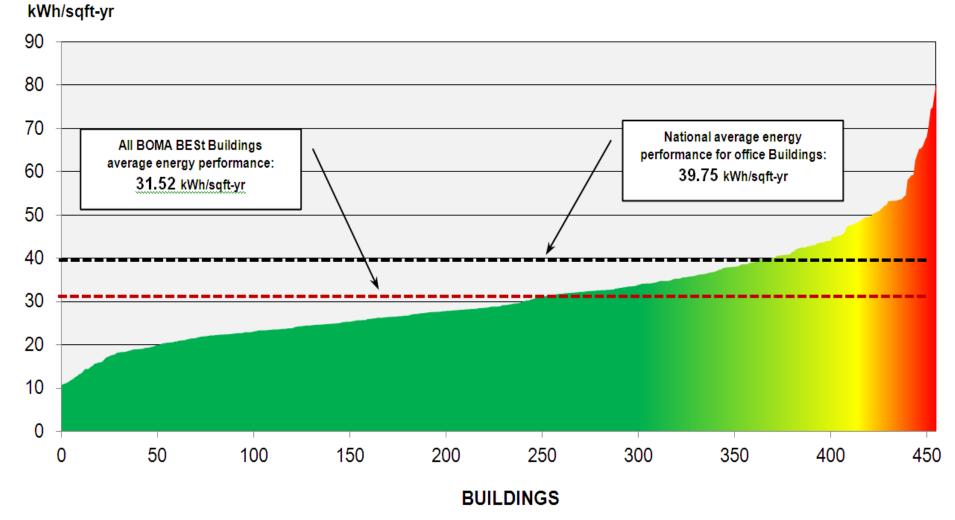

180 Queen Street West


TMFRC

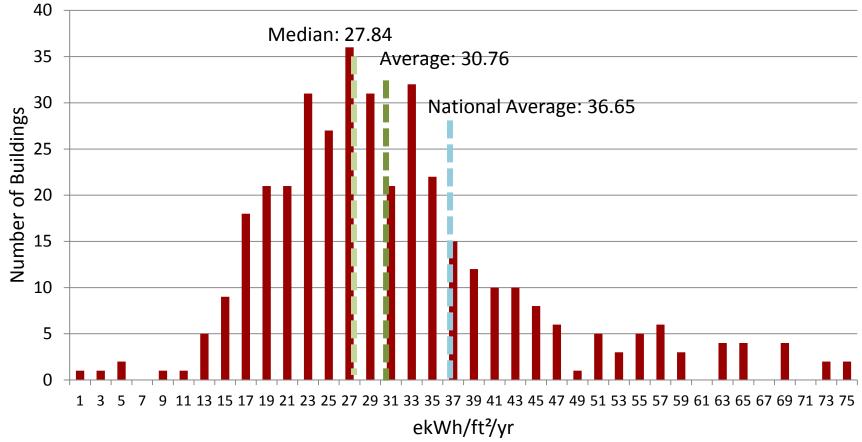
Databases

BOMA BESt – statistically significant database on performance of certified existing buildings

Portfolio Reporting

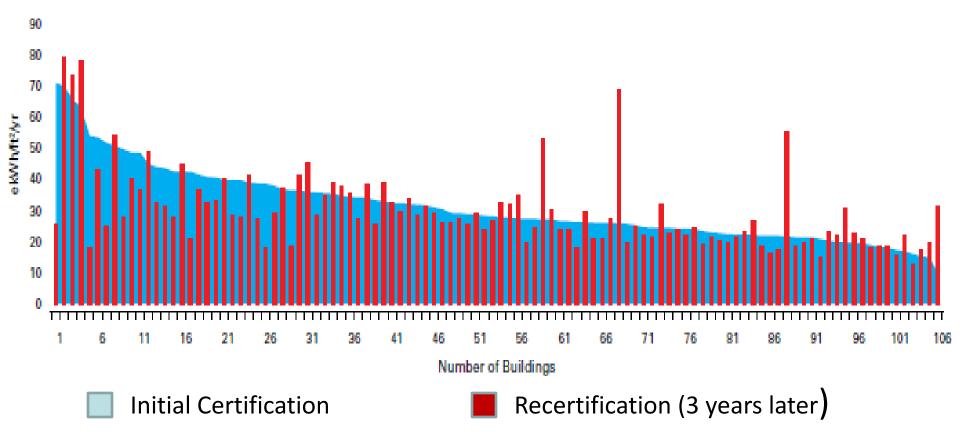


BOMA BESt ENERGY AND ENVIRONMENT REPORT


Industry performance benchmarks

Energy Consumption All BOMA BESt Certified Buildings

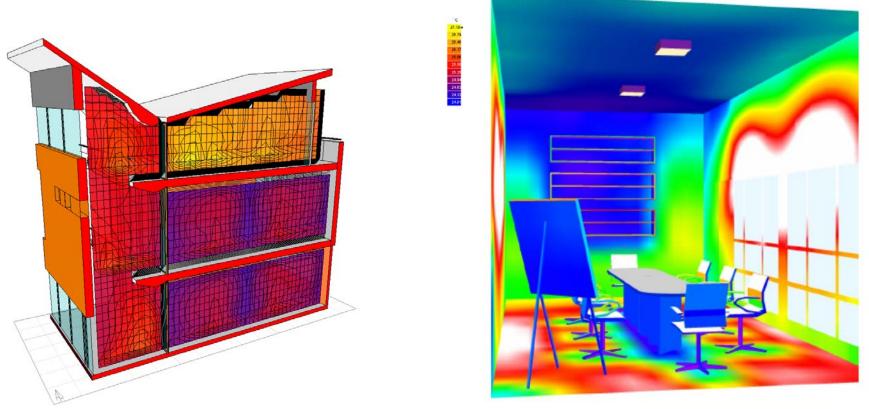
Energy Use Intensity


Energy Use Intensity of BOMA BESt Certified Office Buildings

Tracking Improvements

BOMA BESt – compares consumption

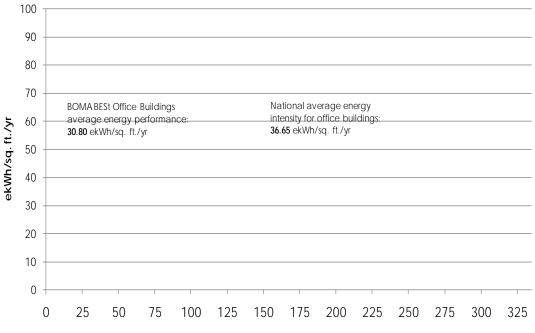
Reduced energy use intensity of 10% in re-certified buildings in 2012


Green Globes addresses the needs of the Stakeholders

- **Designer** (Architect, Engineer)- identification and verification of strategies for sustainable design
- Building Owner -validation of building sustainability
- Property Manager and Operator- framework for environmental asset management
- Institutional Investor future-proofing of building value
- Occupant insurance of healthy and productive environment

Identification and Verification of Green Strategies

Lighting Analysis

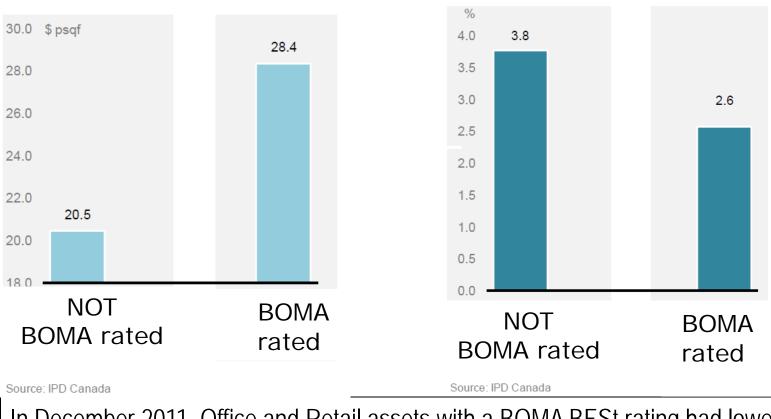

CFD Analysis - Internal Temperature

Building Owner

Validation of a sustainable building

BOMA BESt buildings perform 16% better in terms of energy intensity than the national average

Buildings Energy Intensities of BOMA BESt certified Office Buildings

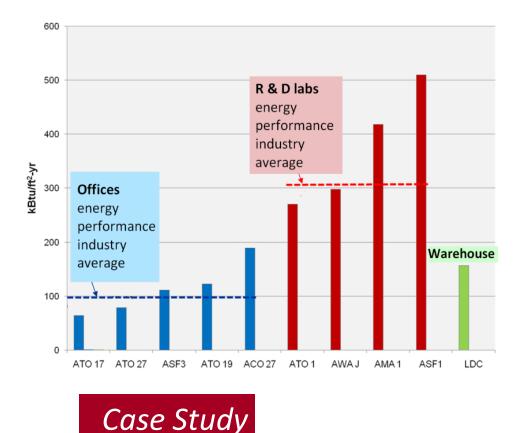

Bell Trinity Square, Toronto, BOMA BESt Level 4 (certified 2011)

Institutional Investor Future-proofing building assets

Income per SF

Vacancy rate (%)

Ivacancy Rale

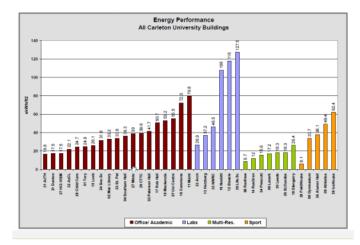


Net Income per sqf foot

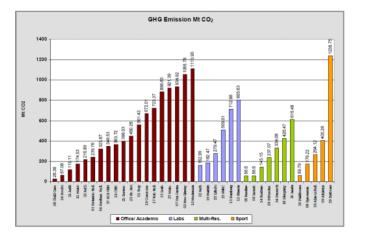
In December 2011, Office and Retail assets with a BOMA BESt rating had lower vacancy and higher net operating income per square foot

Property Manager and Operator

Framework for sustainable asset management


RECOMMENDATIONS

- Focus on buildings with the highest ekWh/ft² for maximum reduction
- Establish policies
- Assign role to monitor utility data
- Energy upgrades
- Energy management measures integrated into building operations


- Identified energy and water savings totaling \$700K (10% annual utility costs) with a 6 yr. payback
- Estimated potential annual GHG reductions across 10 sites in the range of 2700 tons CO₂

Facility Manager

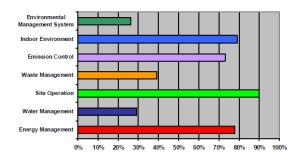
University Campus Portfolio

Performance Benchmarking

Costs

Savings

PART 2 : CAMPUS-WIDE MANAGEMENT AND OPERATIONS


Operations and management best practices were assessed for the campus as a whole with respect to: • Energy management

- Energy management
 Water management
- Site and grounds operation and maintenance
- Waste management
- Emissions, effluents and pollution controls
- Indoor environment management
- Environmental management system

Note that the following achievements listed in this report are self-reported, and no references have been provided for many of the criteria. Should the university seek third party certification, the facility manager will need to supply certains supporting documents as evidence that the criteria are being met. This could include written policies, plans, procedures, maintenance schedules and records. In some cases, the names of persons would be required who have been assigned specific roles, for example the person designated to be responsible for managing and disposing safely of hazardous materials and wastes.

Cartton University achieved an overall score of 66% for Management and Operations best practices as well as some of the site features that cover the campus as a whole. The assessment is scored for the following: energy, water, waster reduction and site (grounds) management, emissions and effluents, indoor environment and environmental management system. The following chart gives scores for each of the sections.

Green Globes Scores for Campus –wide Management and Operations

Table 4- Labe Estimated Energy and Water Systems Upgrade Implementation Costs

Building		ing Systems Plug Load	Fans and Pumps Upgrade and HVAC Control		Coaling Equipment and Systems		Eq	ling and DHW Jornerst and Systems	Water Pixtures Upgrade and Water Optimization	Total Retroft Cost Estimate	
2 Steacie	8	54,000	-	35,000			8	64,000		8.	153,000
3 Hersberg	5	14.000			5.1	85 000	5	100.000		5	199.000
6 Nesbitt			8	191,000			8	175.500		8	305.500
2 Arch	8.	13.000		43.000	8	162,000	1	276.000		8	491.000
S Life Sc	5	15 000	-5	000,030	\$	9.000	-	34,000		\$	141,000
IS NIVEC	4	000.000		70.000	4	20.000				\$	150,000
otala	5	156,888	5	419.000	\$	276.000	8	649 500		8	1,500,500

Table 5- Office /Academic Estimated Energy and Water Cost Savings Potentia

Duilding		ing enstand Load		de and HVAC	Casti Equij Syste	bine tree ma		g and DHW ment and m		Flatures de and Water autors		Estimated Cost gs	Environment Enviro	Pre BEPt etWh/h2	Post BEP1 e#Whith2	Dalley Reduction %
01 Tory	1.8	511.6	Second Second	(+	-	Anne	100	334	8.	7,778	8	17,210	64.28	24.67	24.00	3.5%
02 Mac Library	- 8	21,416	5	16,797	. 6	4.619	8	11.679	8	2,425	8	56,396	349.68	33.16	29.79	10.1%
03 Paterson Hall	1.8	3,529	5	3,529	1.5	1,520	10140	16,770	1	1,032	108	28,996	145.10	4175	30.79	11.9%
64 Southarn Hall	. 5	8.888		7.278	. 5	1,002		28.717	8	1,526	. 8	48,941	271.65	31.54	29.13	19.8%
07 Uni Centre	5	21,150	5	13,291	5	13,990	10.5	123,807	5	10,200	1.2	130.403	104.44	53.17	45.00	17.5%
10 Mackenzie	. 5	20.139	- 5	13,291	- 5	13,950		63,867	8	19,200	8	135.485	094.44	53.17	43.81	17.5%
tt Maint	3	11,263	5	10,419	1041	8,679	10040	12,580	1	1,928	1	44,896	271.54	21.05	25.05	1.2%
15 Loeb	- 5	22,210	5	11,110	5	0.079	5	12,580	5	3,269	5	57,85T	350.96	26.05	23.90	11.3%
17 Rob Hall	5	9 200	10.8	4,318	1.8	4,747	1 3	10.511	1	2,763	- 8	31,543	179.02	50.70	46.48	8.4%
19 Comments	5	10.756	5	13,575	5	3,968	5	23.077	1	7,754	5	59,131	303.80	72.53	63.97	11.8%
21 Dunton	1.8	1.502		5,064	1.6	13,015		7.992	1 1	8.025	4	38.259	193-15	17.47	15.33	12.31
23 St. Pat	- 8	2.044	. 5	7,605	5	8,095	. 5	963			-8-	19.627	131.91	33.70	30.59	9.6%
24 Sec.8c	15	741	5	-345	5	207	5	3,034	5	004	5	5,313	24.24	31.75	26.00	10.15
27 Minto	. 8	32.961		14,292	8	2,382				1,789	- 5	\$1,445	339.68	39.01	33.88	13.25
28 Child Care	1.4	240			100	100	100	548	5	40.3	1.4	1,090	3.32	2475	23.00	7.3%
29 CTTC	- 5	7,730		4,919		2,459	. 8	5.967	8	2,004	- 8	23.078	133.99	39.59	35.52	10.3%
51 AzTH	1.5	1.011	100545	1.800	1.4	521				6.700	10040	10,641	28.95	16.70	15.60	7.1%
32 AgCL	5	5.521	5	3,105	5	1,521			5	8,792	- 5	18,540	66.50		19.07	10.21
37 HOLVISM	5	5.129	5	4.711	5	5,545			1	5,478	8	29,883	105.07	17.53	15.72	10.3%
Totala	8	209.206		135,547	. 5	96,114	8	261,787	8	101,560		804,186	4.384.4	34.77	30.64	12.2%

Occupant

Base Building - Occupant Space Assessments – basis for dialogue

Base Building

Applicable Points	Rating	Category
167 out of 242	69%	Overall Total
0 out of 0	0%	Environmental Certification
20 out of 30	67%	Energy
25 out of 25	100%	Commuting
33 out of 55	60%	Water
20 out of 30	67%	Waste
12 out of 20	60%	Hazardous Materials
54 out of 57	95%	Indoor Environment
0 out of 15	0%	Tenant Communications
3 out of 10	30%	Documentation

Tenancy

Applicable Points	Rating	Category				
723.6 out of 971	75%	Overall Total				
34.6 out of 50	69%	Space Use				
189 out of 251	75%	Energy				
50 out of 50	100%	Sub Metering				
29 out of 40	72%	Plug Load				
80 out of 126	63%	Lighting				
30 out of 35	86%	Heating & Cooling				
70 out of 100	70%	Commuting & Travel				
70 out of 70	100%	Water				
65 out of 80	81%	Resource Use				
75 out of 100	75%	Waste Management				
105 out of 120	88%	Indoor Environment				
100 out of 100	100%	Procurement				
15 out of 100	15%	Green Team				

Questions?

David Stewart MS P. Eng. David C. Stewart & Associates Inc. 16 Shawinigan Road Dartmouth, NS 902 266 3663 www.greenglobes.com