

New Canadian Design Provisions for CLT in CSA 086

M. Mohammad, PhD, P.Eng Advanced Building Systems, FPInnovations

ATLANTIC WOOD SOLUTIONS FAIR Halifax, NS October 5th, 2017

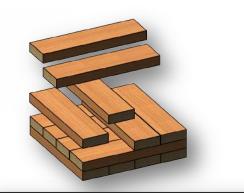
Recent Trends/Opportunities

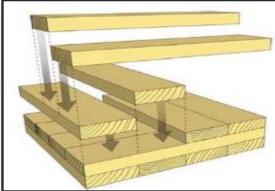
Strong interest to re-specify wood in non-res. & mid- & high-rise buildings (i.e., renaissance in wood construction)

Key drivers:

- Availability of new generation of innovative EWP such as CLT, connection systems & design tools
- Recent changes to building codes
- Environmental concerns (i.e., climatic changes)- favors wood

What is Possible to Build with Wood?!


- LWF Construction (up to 6 storeys)
- Mass Timber Frame (e.g. P&B glulam)
- Massive Timber Plates (e.g., CLT, LVL, etc.)
- Hybrid Systems



^{© 2016} FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations

Cross-laminated Timber (CLT)

- o Lightweight & prefab. panels
- Wood strips stacked crosswise on top of each other (glued or nailed)
- o Thicknesses vary from 50 to 600 mm
- Panels are 2-3 m wide x 18 m long

Cross-laminated Timber (CLT)

- Cross lamination minimizes swelling & shrinkage
- Increases considerably the loadbearing capacity
- Two way action such as concrete slab
- Good seismic & fire resistance heavy timber construction (i.e., inherent fire resistance)

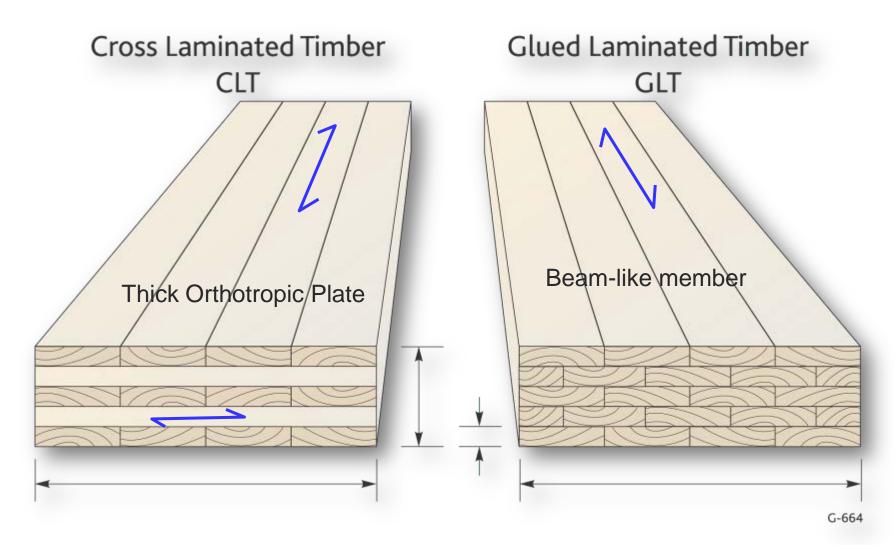
© 2016 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations

Additional Advantages of CLT Panels

- Produced with precision CNC machines
- Quick on-site assembly

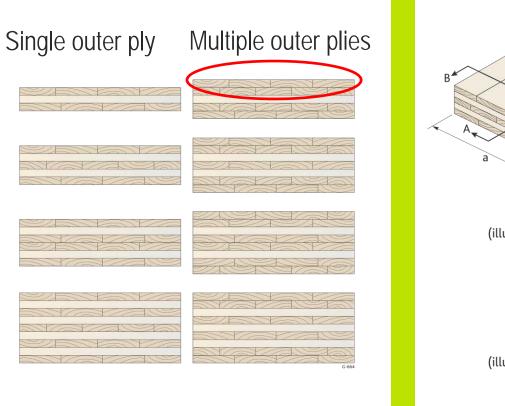
(One storey/week or less per avg. size floor plan)

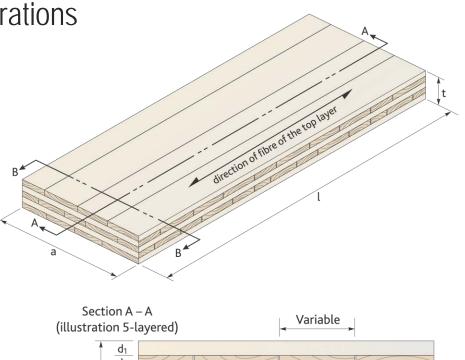
- Min site Noise (equipment/personal)
- Min site Waste (high level of prefab.)
- Ideal for dense urban in-fill projects
- Health and safety benefits
- Cost competitive in certain applications
- <u>Renewable material from sustainable</u> <u>forests</u>

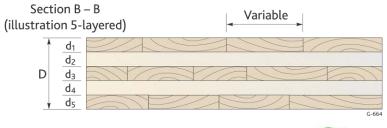

One of the most promising wood alternative to concrete assemblies.

6

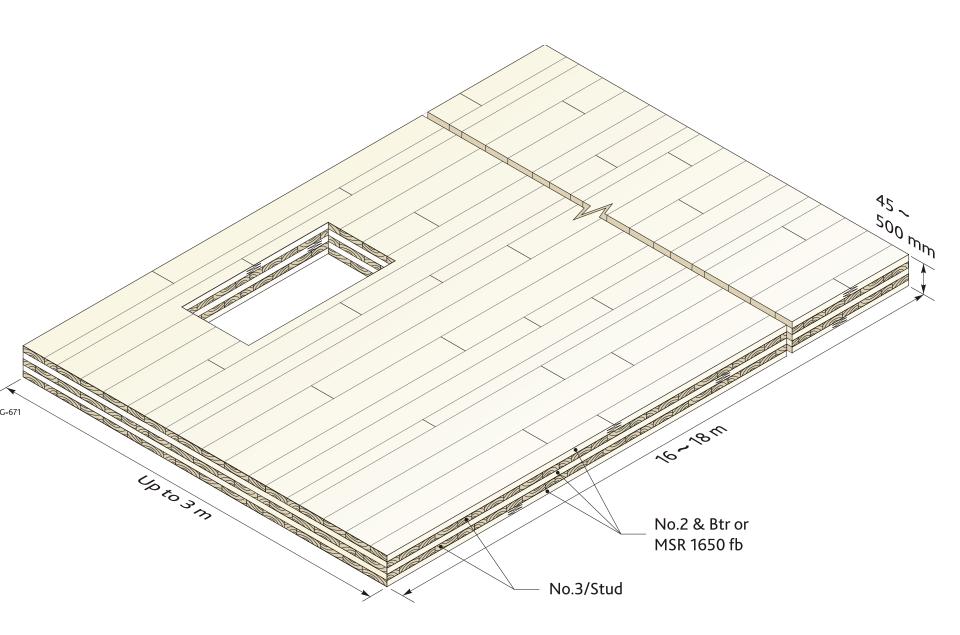
Why CLT is Different than Glulam?!

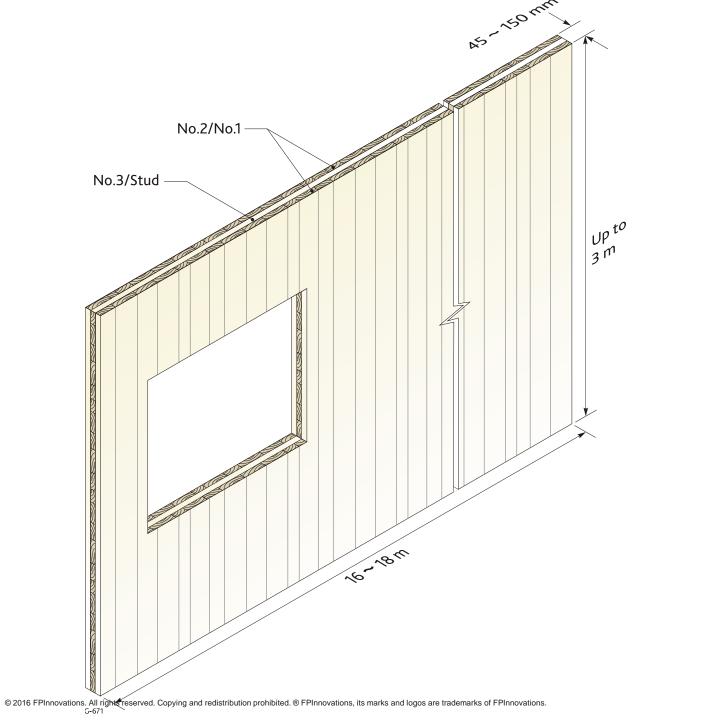


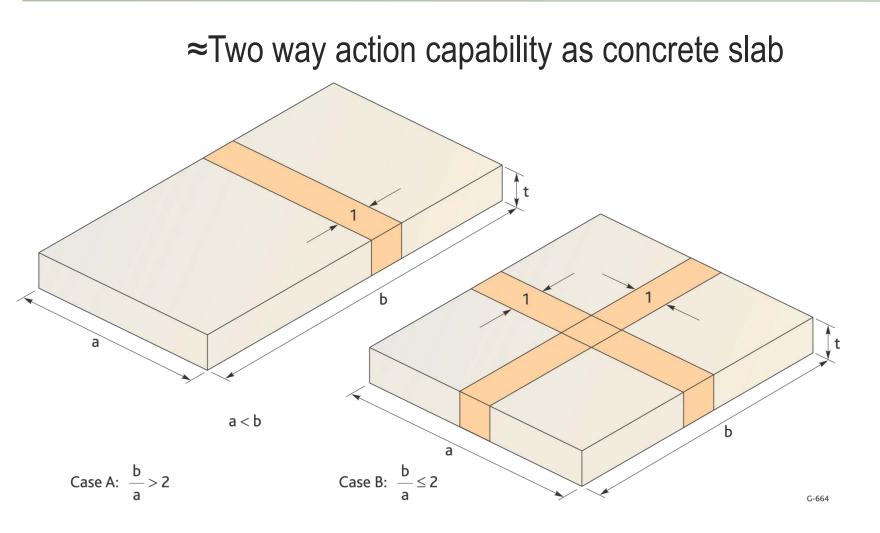

7


Configurations

Some possible configurations







One-Way or Two-Way Slab Action

CLT System in Mid-Rise

Non-residential Applications

CLT Roof on Top of Concrete/Steel Building, Quebec

© 2016 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations.

CLT in Hybrid Construction

 CLT with concrete stairwells

CLT in Hybrid Construction (Parking Garage)

CLT in Modern Timber Bridges in Canada

Courtesy of Nordic Engineered Wood

FPInnovations

NRCan's TWB Demo Initiative

UBC BC, Vancouver 18 storeys hybrid CLT/glulam Courtesy of CWC

Nordic's Origine, Quebec City 13 storeys CLT/glulam

Supporting Research (Design & Approval)

- Fire testing (fire resistance, fire stops, shaft demo fire, flammability)
- Structural (shearwalls, diaphragms)
- Acoustics
- Building envelope
- Mitigating construction risks

CLT Research and Development in Canada

- 2009-2016: Extensive research on CLT conducted by FPI, NRC, universities (NEWBuildS) and industry
- 2011-16: FPI, CWC/WWs, NEWBuildS held several workshops targeting engineers, architects and other stake holders across Canada to share research findings

© 2016 FPInnovations. nnovations, its marks and logos are trademarks of FPInnovations

World's Largest Residential Project in CLT, Montreal

- o 597,560 ft²
- o Condos and townhouses
- o Completion by fall 2017
- o Glulam posts/beams and CLT

© 2016 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations.

US TWB Prize Competition: Winning Building (USDA and SLB)

Framework, a 12 storeys, Portland, Oregon Curtsey SLB

- Fire & structural testing is underway to support the design/approval
- Use PT technology (IP with FPI)
- Construction is expected to start
 January 2018

Inspiring Modern Tall Wood Buildings in Europe

© 2016 FPInnovations. All rights reserved. Copying

Status of CLT in Canada

- Introduced to Canada in 2006
- Canadian-made CLT is commercially available
- Over 150 projects that utilizes CLT across Canada
- Extensive research by FPInnovations, Universities, NRC & industry
- Mostly funded by NRCan, industry (BSLC) and provinces (QC, BC/FII)
- Strong interest in CLT among designers, developers, etc.

CLT in Canadian Codes and Standards

- CLT manufacturing standard developed for Canada and US (ANSI/APA PRG 320-12)
- Design provisions implemented in the 2016 Supplement to CSA O86
- Proposal on CLT as a LLRS targeting 2020 edition of the NBCC
- Quebec's "Pre-approved" Alternative Solution Guide for mass timber including CLT for up to 12 storeys
- Request for code change for the implementation of "Encapsulated Mass Timber" in the 2020 NBCC for up to 12 storeys
- ON MNRF is developing a TWB Reference Guide

26

Developing Design Guidelines CLT Handbook & TWB Guide

FPInnovatio

- FPI's CLT handbooks have been instrumental in providing guidance to designers under AS provisons & in supporting CLT code change proposals in Canada and the US
- Critical until CLT design provisions are widely accepted in codes and standards in Canada and the US

The ANSI / APA PRG 320 Standard

- Product manufacturing standard for CLT developed by APA
- Harmonized NA standard (Canada and the US)
- Scope
 - CLT dimensions and tolerances
 - Component requirements
 - Qualification testing
 - Quality assurance
 - Annex: Design properties (mandatory)
- Currently under revision to update the 2012 edition
- Download <u>www.apawood.org</u>

limber

Introducing CLT Design Provisions in CSA 086

- **US: Implementation of CLT was Relatively Faster...**
- Provisions for CLT were introduced in the 2015 editions of the International Building Code (IBC) for use as "Type IV"-Heavy Timber construction and in the NDS
- Provisions in NDS cover design for gravity loads including connections and fire resistance of CLT
- Seismic design provisions in the US are still under development (ongoing research)

CLT Design Provisions in CSA 086

 CSA O86 voted to have a "place holder" for CLT in the 2014 edition targeting detailed provisions in the 2016 Supplement

This is what we ended up with in CSA O86-14 edition!!!

086-14

© 2014 CSA Group

8 Cross-laminated timber (CLT)

Clause 8 has been reserved for design provisions which will cover CLT manufactured in accordance with ANSI/APA PRG 320 standard.

Note: A CWC commentary is planned to follow the inclusion of design provisions of Clause 8.

2016

CSA O86-14: 2016 Supplement

 January 2016: CSA O86 approved the adoption of CLT in the 2016 Supplement

June 2016: 2016 Supplement published by CSA

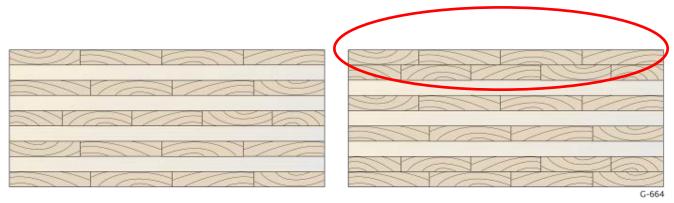
CLT Design Provisions in CSA 086-14

- Provisions cover the following:
 - Definition, materials, stress grades
 - Bending stiffness and resistance
 - Shear stiffness and resistance

- Compressive resistance parallel and perp. to panels
- Connections in CLT
- CLT as a lateral load resisting system (LLRS)
- Serviceability (i.e., deflections, vibrations)
- Structural fire resistance

CLT Definition and Layups

- Made of at least 3 layers of <u>sawn lumber</u> laminated with structural adhesives manufactured as per ANSI/APA PRG 320 standard
- Balanced combination of orthogonal layers



© 2016 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations

CLT Definition and Layups

- Laminations oriented in the same direction to be made of lumber of the same grade and species combination
- Stress grades as per APA/PRG 320
- Panels may be designed with adjacent layers oriented in the same direction

Primary CLT Stress Grades for Canada

CLT Stress Grade	Wood Species /Type of Lay-up	
	Parallel Layers	Perpendicular Layers
E1	1950f-1.7E SPF <u>MSR lumber</u>	No. 3 Spruce-pine-fir
E2	1650f-1.5E Douglas fir-Larch <u>MSR</u> <u>lumber</u>	No. 3 Douglas fir-Larch lumber
E3	1200f-1.2E Northern Species <u>MSR lumber</u>	No. 3 Eastern Softwoods, Northern Species, or Western Woods lumber
V1	<u>No. 2 Douglas fir-Larch lumber</u>	No. 3 Douglas fir-Larch lumber
V2	<u>No. 1/No. 2 SPF lumber</u>	No. 3 SPF lumber

*Custom CLT grades are permitted when approved by an approved agency in accordance with the qualification and mechanical test requirements specified in ANSI/APA PRG 320-12

Specified Strengths and MOE of CLT Laminations [MPa]

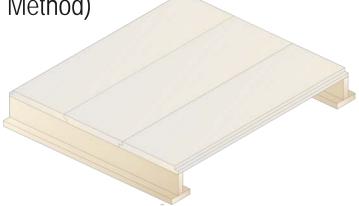
Stress grade	Longitudinal Layers						Transverse Layers					
	f _b	Ε	f _t	f _c	f _s	f _{cp}	f _b	Ε	f _t	f _c	f _s	f _{cp}
E1	28.2	11700	15.4	19.3	0.50	5.3	7.0	9000	3.2	9.0	0.50	5.3
E2	23.9	10300	11.4	18.1	0.63	7.0	4.6	10000	2.1	7.3	0.63	7.0
E3	17.4	8300	6.7	15.1	0.43	3.5	4.5	6500	2.0	5.2	0.43	3.5
V1	10.0	11000	5.8	14.0	0.63	7.0	4.6	10000	2.1	7.3	0.63	7.0
V2	11.8	9500	5.5	11.5	0.50	5.3	7.0	9000	3.2	9.0	0.50	5.3

Notes: (a) Values for dry service conditions (b) Standard-term DOL applies

() cu

Strength Modification Factors

- Load duration factor, $K_D = 1.0$ (same as lumber/glulam)
- Service condition factor, K_s=1.0 (Dry" service conditions ONLY)
- Treatment factor, K_T
 - 1.0 for no treatment
 - CLT treated with strength-reducing chemicals, strength & stiffness capacities adjustment as per Clause 3.3.2. in CSA O86
- System factor, $K_{H} = 1.0$ shall be used



Proposed Analytical Design Methods for CLT Elements used in Floor and Roof Systems

European proposed design methods for CLT

1) Mechanically Jointed Beams Theory (Gamma Method)

- Bending strength & stiffness
- Shear Strength
- 2) Composite Theory (k Method)
 - Bending strength & stiffness
 - Commonly used in plywood
- 3) Shear Analogy (Kreuzinger)
 - Bending Stiffness and Shear Stiffness
 - Adopted in ANSI PRG 320 standard

Bending Resistance - Major Direction

$$M_{r,y} = \phi \cdot F_b \cdot S_{eff,y} \cdot K_{rb,y}$$
$$\phi = 0.9$$

$$F_b = f_b(K_D K_H K_{Sb} K_T)$$

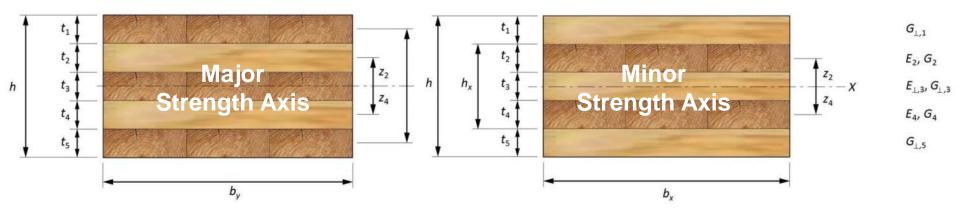
 f_b = specified bending strength in the major direction

Effective Section Modulus

$$S_{eff,y} = \frac{I_{eff,y} \cdot 2}{h} \qquad \text{If } \mathsf{E}_1 = \mathsf{E}_2 = \mathsf{E}_3, \text{ etc.}$$

 $S_{eff,y} = \frac{(EI)_{eff,y}}{E_1} \cdot \frac{2}{h} \quad \text{If } E_1 \neq E_2 \neq E_3, \text{ etc.}$

$$K_{rb,y} = 0.85$$
 Calibration factor


Effective Bending Stiffness and In-plane Shear Rigidity: Major/Minor Strength Axis

(EI)_{eff y,x} ~

Effective bending stiffness in the <u>major</u> or <u>minor</u> strength axis

 $(GA)_{eff ZY,ZX} \sim$ Effective shear rigidity in the major or minor strength axis

Effective Bending Stiffness (EI)_{eff} and Shear Rigidity (GA)_{eff}

(1) Effective bending stiffness $(EI)_{eff}$ h1 Z_1 h2 $(EI)_{eff} = \sum_{i=1}^{n} E_{i} \cdot b_{i} \cdot \frac{h_{i}^{3}}{12} + \sum_{i=1}^{n} E_{i} \cdot A_{i} \cdot z_{i}^{2}$ Z_2 Z3 N.A. h tot h3 h4 h5 (2) Effective shear stiffness $(GA)_{eff}$ width (b) a^2 $(GA)_{eff} = \frac{1}{\left[\left(\frac{h_1}{2 \cdot G_1 \cdot b}\right) + \left(\sum_{i=2}^{n-1} \frac{h_i}{G_i \cdot b_i}\right) + \left(\frac{h_n}{2 \cdot G_n \cdot b}\right)\right]}$ $a = h_{tot} - \frac{h_1}{2} - \frac{h_n}{2}$

G. -

Rolling shear will govern the design!

Shear Resistance

 $V_r = \phi F_v \frac{2A_{gross}}{3}$

 $\phi = 0.9$

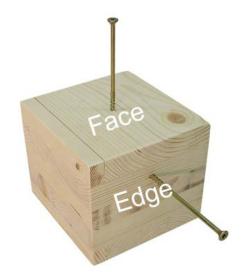
43

FPInnovation

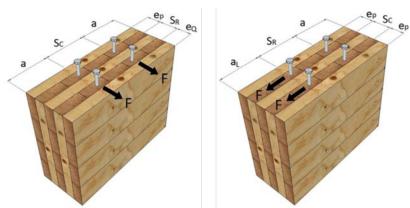
Compressive Resistance

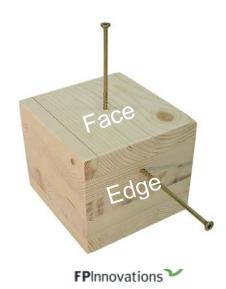
- Compressive resistance under <u>axial load</u>
 - Only layers with laminations oriented parallel to the applied axial load assumed to carry the load
 - CLT panels designed with outer layers oriented parallel to applied axial loads
 - Resistance to combined bending and axial load

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \left[\frac{1}{1 - \frac{P_f}{P_{E,v}}} \right] \le 1$$


- Compressive resistance perp. to grain (bearing)
- Effect of load near support

- Design equations provided for connections with:
 - Bolts & dowels
 - Lag screws
 - o Wood screws
 - o Nails & spikes



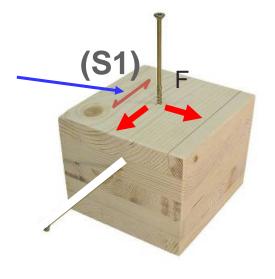


Connections in CLT

- Introduce a "CLT factor" for lateral & withdrawal resistances (J_x)
- Spacing between fasteners as for glulam/lumber for fastening on face
- New spacing for fasteners in the panel edge

Connections in CLT Lateral Resistance in CLT

Dowels, bolts & lag screws installed in the **plane side** of the panel (i.e., perpendicular to the panel)


Load // to major strength direction (i.e., outer layer)

$$f_{iP} = 50 G (1 - 0.01 d_F) J_X$$

 J_X = adjustment factor for connections in CLT = 0.9 for CLT

Load perp. to major strength direction

$$f_{iQ} = 22 \ G(1 - 0.01d_F) \ (N / mm^2)$$

Connections in CLT

Lateral Resistance in CLT

 Dowels, bolts & lag screws installed in the narrow side of the panel (i.e., on edge)

$f_{iQ} = (0.67 * 22 \ G(1 - 0.01d_F) \ (N / mm^2)$

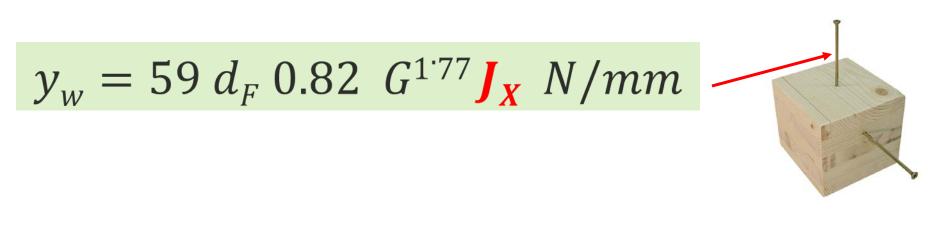
- 0.67 accounts for bolts, dowels & lag screws installed in end grain (conservative)
- <u>Less conservative</u>: Use Jx=0.9 if precautions are taken to ensure dowels are driven in side grain

Connections in CLT

Lateral Resistance in CLT

Timber Rivets: Beyond Scope

Could determine capacity based on exterior ply penetration ONLY!



© 2016 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations.

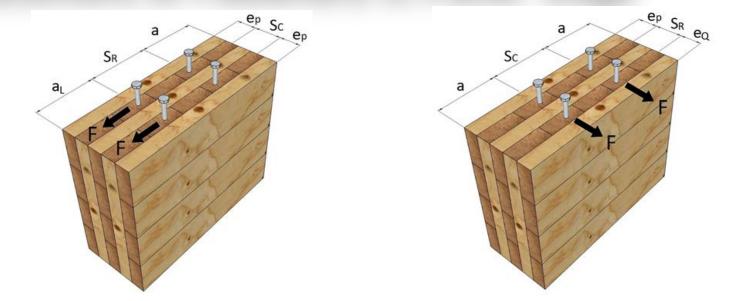
Withdrawal Resistance in CLT

• Lag screws driven per. to the CLT panel

• Use current Eq. for withdrawal for lumber & glulam for <u>face</u> with an adjustment factor for CLT ($J_X = 0.9$)

Withdrawal Resistance in CLT

Lag screws driven in <u>edge of CLT panel</u>


• Use current Eq. for withdrawal for lumber & glulam for <u>face</u> with an adjustment factor for CLT ($J_X = 0.9$) & end grain factor ($J_E = 0.67$)

$y_w = 59 d_F 0.82 G^{1.77} J_X N/mm$

<u>Conservative:</u> Use 0.67 end grain factor for withdrawal from panel edge <u>Less conservative</u>: Use same equation for lags screws driven perp. to panel but ensure side grain penetration occurs

Fastenings Capacity in CLT

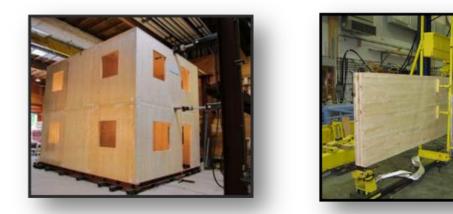
Placement of Fasteners in Panel Edge

Fastener	S _R	S _c	a _L	а	e _Q	e _P
Nails/ Screws	10d	4d	12d	7d	6d	3d
Bolts	4d	3d	5d/50mm	4d/50mm	5d	1.5d

CLT as a LLRS

CLT shearwalls and diaphragms

- Applies ONLY to platform-type constructions with <u>height not</u> <u>exceeding 30 m</u>
- For <u>high seismic zones (I_E F_a S_a(0.2) > 0.75)</u>, the height is limited to 20 m
- Factored shear resistance of CLT shearwalls is governed by connections (i.e., panel-to-panel and panel-to-foundations or floors), assuming each individual panel acts as a rigid body



General Seismic Design Considerations

- Rd ≤ 2.0 and Ro = 1.5 where the energy is dissipated through connections (i.e., capacity design principles) assuming wall panels act in <u>rocking</u> or in <u>combination of</u> <u>rocking and sliding</u>
- o In-plane and out of plane irregularities not allowed
- CLT wall panels with aspect ratios less than 1:1 or acting in sliding only shall be designed with Rd Ro = 1.3

© 2016 FPInnovations. All rights reserved. Copying and redistribution prohibited. @ FPInnovations, its marks and logos are trademarks of FPInnovations.

Serviceability Design Provisions

Consideration in wood

- Calculate the maximum deflection of CLT floors
 - Equations account for creep and effect of rolling shear in CLT

$$\Delta_{max} = \Delta_{ST} + \Delta_{LT} \cdot K_{creep}$$

Vibration-controlled span limit
 (Based on extensive FPI's floor vibration research program)

$$l_v \le 0.11 \; \frac{\left(\frac{(EI)_{eff}}{10^6}\right)^{0.29}}{m^{0.12}}$$

Fire Resistance of CLT (Annex B)

- Design methodology to develop fire resistance ratings for mass timber
- Design charring rate for CLT
- Facilitates development of "Alternative Solutions" designs (i.e., alternate to testing)
- Annex B is "non-mandatory"

Thank you

For more information contact:

mohammad.mohammad@fpinnovations.ca

www.fpinnovations.ca

Deflection of CLT slabs

Uniformly distributed load, ω Ο

$$\Delta = \frac{5}{384} \frac{\omega L^4}{(EI)_{eff}} + \frac{1}{8} \frac{\omega L^2 \kappa}{(GA)_{eff}} k_{RS}$$

Mid-span concentrated load, P Ο

$$\Delta = \frac{1}{48} \frac{PL^3}{(EI)_{eff}} + \frac{1}{4} \frac{PL\kappa}{(GA)_{eff}} k_{RS}$$

Max. deflection under the load combinations for serviceability limit states shall not exceed L/180 of the span.

 k_{RS} = adjustment factor to shear stiffness to account for rolling shear effect

= 1.33 for elastic deflection under short term or standard term loads (Δ_{ST})

= 1.0 for instantaneous elastic deflection under long term loads (Δ_{IT}) κ (kappa) = shear coefficient form factor equals to 1.2 for a single span. For continuous spans, relevant values shall be used. 58 **FP**Innovatio

Serviceability Limit States

Vibration Performance of CLT Floors

$$l \le 0.11 \; \frac{\left(\frac{(EI)_{eff}}{10^6}\right)^{0.29}}{m^{0.12}}$$

I = vibration controlled span, m

 $(EI)_{eff}$ = apparent stiffness in the span direction for 1 m wide panel, N-mm²

m = linear mass of CLT for 1 m wide panel, kg/m

Note: Increase span by up to 20% (\leq 8.0m) for multiple-span floors with a nonstructural element that is considered to provide enhanced vibration effect, e.g. internal partition, finishes and ceiling.

